Bearing Mounting Issues # Deep Groove vs. Angular Contact Ball Bearing # **Mounting of Angular Contact Ball Bearings** # **Critical Bearing Design Parameters** | | | | Fillet | Shou | lder | | Load Ra | tings, kN | | |-------|-----|--------|---------|--------|----------------|-----------------|----------------|-----------|----------------| | Bore, | OD, | Width, | Radius, | Diamet | er, mm | Deep G | roove | Angular | Contact | | mm | mm | mm | mm | ds | d _H | C ₁₀ | C ₀ | C10 | C _o | | 10 | 30 | 9 | 0.6 | 12.5 | 27 | 5.07 | 2.24 | 4.94 | 2.12 | | 12 | 32 | 10 | 0.6 | 14.5 | 28 | 6.89 | 3.10 | 7.02 | 3.05 | | 15 | 35 | 11 | 0.6 | 17.5 | 31 | 7.80 | 3.55 | 8.06 | 3.65 | | 17 | 40 | 12 | 0.6 | 19.5 | 34 | 9.56 | 4.50 | 9.95 | 4.75 | d_b: Bore d_a: Outer Diameter b_w: Width ## **Critical Bearing Design Parameters** ## **Typical Bearing Mounting** - One ball bearing at each end, - One tapered roller bearing at each end, or - A ball bearing at one end and a straight roller bearing at the other. - One of the bearings usually has the added function of positioning or axially locating the shaft. - The housing bore and shaft outside diameter must be held to very close limits. Instructor: Ping C. Sui, Ph.D. ME 1029 Machine Design 2 Fall 2021 # 11–9 Selection of Tapered Roller Bearings ## **Tapered Roller Bearings** Tapered roller bearings are more complicated than ball/cylindrical roller bearings. Four components of a tapered roller bearing assembly: - Cone (inner ring) - Cup (outer ring) - Tapered rollers - Cage (spacer-retainer) Advantages over Ball Bearing: - Greater load-carrying capacity - Carrying both <u>radial</u> and <u>thrust</u> (axial) loads, or any combination of the two, at the same time. Figure 11-13 Bearing Preload, Mounting, Alignment, and Fit ## **Mounting of Tapered Roller Bearings** Even when an external thrust load is not present, the <u>radial load will induce a thrust reaction</u> within the bearing because of the taper. To avoid the separation of the races and the rollers, it is common to use at least two tapered roller bearings on a shaft. <u>Direct mounting</u>: two bearings mounted with the cone backs facing each other <u>Indirect mounting</u>: with the cone fronts facing each other # **Load Transmission of Tapered Roller Bearings** ## **Indirect Mounting** - Cone fronts facing each other - Applied preload from ID side ## Direct mounting: - Cone backs facing each other - Applied preload from ID side ## **Bearing Preload** - Objective of preloading is to remove the internal clearance to increase the fatigue life, and to decrease the shaft slope at the bearing. - Preloading of straight roller bearings may be obtained by using an interference fit for the outer ring. - Ball bearings are usually preloaded by the axial load built in during assembly by the differences in widths of the inner and outer rings. - It is always good practice to follow manufacturers' recommendations in determining preload, since too much will lead to early failure. ## Preload Setting - Direct vs. Indirect Mounting Tapered roller bearings are designed to take both radial and thrust loading. Under radial loads, a force is generated in the axial direction that must be counteracted. As a result, tapered roller bearings are normally adjusted against a second bearing. ## **Direct Mounting** - The outer ring is used to adjust the bearing setting - The outer ring is usually set in position by an outer-ring follower or mounted in an outer-ring carrier. ## **Indirect Mounting** Bearing setting is typically achieved by clamping against one of the inner rings. # **Tapered Roller Bearing Equivalent Loading** # **Induced Radial Load on Tapered Roller Bearing** A radial load on a tapered roller bearing will induce a thrust reaction. Loading zone includes about half the rollers (approximately 180°). F_i: <u>induced thrust load</u> from a radial load with a 180° load zone, Timken provides the equation $$F_i = \frac{0.47F_r}{K}$$ where the K factor is geometry-specific, and is the ratio of the radial load rating to the thrust load rating. Recommended K factor in the preliminary selection process: - K=1.5 for a radial bearing - K=0.75 for a steep angle bearing # **Timken Taper Roller Bearing Catalogue** ## **TAPERED ROLLER BEARINGS** SINGLE-ROW • TYPE TS ## TYPE TS Fig. 11-15 in the textbook is an example table for singlerow tapered roller bearings | Bea | aring Dimensi | ions | | | | | | | | Part Number | | | |-------------------------|----------------------|----------------------|--|-----------|-------------------------|-------------------------|--|-----------------------------|--------------------------|-------------|---------|--| | | | | | | | Load Ratings | | | | | | | | Bore
d | 0.D.
D | Width
T | Dynamic ⁽¹⁾
C ₁ | Fact
e | ors ⁽²⁾
Y | Dyna
C ₉₀ | mic ⁽³⁾
C _{a90} | Factors ⁽²⁾
K | Static
C ₀ | Inner | Outer | | | mm
in. | mm
in. | mm
in. | N
Ibf | | | N
lbf | N
Ibf | | N
lbf | | | | | 19.050
0.7500 | 56.896
2.2400 | 19.368
0.7625 | 45400
10200 | 0.31 | 1.95 | 11800
2650 | 6200 1390 | 1.90 | 45300 10200 | 1775 | 1729 | | | 19.987
0.7869 | 46.982
1.8497 | 14.381
0.5662 | 26700 6010 | 0.36 | 1.68 | 6930
1560 | 4230 952 | 1.64 | 25400 5720 | 05079 | 05185/ | | | 19.987
0.7869 | 46.990
1.8500 | 15.250 0.6004 | 26700 6010 | 0.36 | 1.68 | 6930
1560 | 4230 952 | 1.64 | 25400 5720 | 05079 | 05186 | | | 19.987
0.7869 | 47.000 1.8504 | 14.381
0.5662 | 26700 6010 | 0.36 | 1.68 | 6930
1560 | 4230 952 | 1.64 | 25400 5720 | 05079 | 05185 | | | 19.987
0.7869 | 47.000 1.8504 | 14.381
0.5662 | 26700 6010 | 0.36 | 1.68 | 6930
1560 | 4230
952 | 1.64 | 25400
5720 | 05079 | 05185-3 | | #### SINGLE-ROW STRAIGHT BORE # **Figure 11-15** | | | 000 | 9 | | | | | | co | ne | 36 | | cu | p | | | |------------------|----------------------|------------------|---------------------|---|------|----------------|-------------------------|----------------|------------------|------------------|--------------|---------------|------------------|------------------|----------------|-----------------| | F1000 | outside | Total delica | 500 n | ng at
pm for
ours L ₁₀ | fac- | eff. | part n | umbers | max
shaft | Section 4. | abou | king
ilder | max
hous- | width | sho | cking
sulder | | bons | diameter | width | row
radial | thrust | tor | load
center | cone | cup | fillet
radius | width | dum | eten | fillet
radius | width | dis | noters : | | d | D | T | N
lbf | N
lbf | K | a© | | - | R® | В | db | da | гO | С | D _b | D _a | | 25,000
0.9843 | 52,000
2.0472 | 16.250
0.6398 | 8190
1840 | 5260
1180 | 1.56 | -3.6
-0.14 | ♦ 30205 | ♦ 30205 | 1.0 | 15,000
0.5906 | 38.5
1.20 | 29.0
1.14 | 1.0
0.04 | 13,000
0,5118 | 46,0
1.81 | 48.5
1.91 | | 25.000
0.9843 | 52,000 2.0472 | 19.250
0.7579 | 9520
2140 | 9510
2140 | E.00 | -3.0
-0.12 | ◆32205-B | ◆32205-B | 1.0
0.04 | 18,000
0.7087 | 34.0
1.34 | 31.0
1.22 | 0.04 | 15,000
0,5906 | 43.5
1.71 | 49.5
1.95 | | 25,000
0.9843 | 52,000
2,0472 | 22,000
0.8661 | 13200
2980 | 7960
1790 | 1.66 | -7.6
-0.30 | 33205 | ♦ 33205 | 1.0
0.04 | 22.000
0.8661 | 34.0
1.34 | 30.5
1.20 | 1.0
0.04 | 18.900
0.7087 | 44.5
1.75 | 49.0
1.93 | | 25.000
0.9843 | 62,000
2,4409 | 18.250
0.7185 | 13000
2930 | 6680
1500 | 1.95 | -5.1
-0.20 | ◆ 30305 | ◆38305 | 1.5
0.06 | 17,000
0.6693 | 32.5
1.28 | 30.0
1.18 | 1.5
0.06 | 15.000
0.5906 | 55.0
2.17 | 57.8
2.24 | | 25.000
0.9843 | 62.000
2.4409 | 25.250
0.9941 | 17400
3910 | 8930
2010 | 1.95 | -9,7
-0.38 | + 32305 | ◆32305 | 1.5
0.06 | 24.900
0.9449 | 35.0
1.38 | 31.5
1.24 | 1.5 | 20,000
0,7874 | 54.0
2.13 | 57.0
2.24 | | 25.159
0.9905 | 50.005
1.9687 | 13.495
0.5313 | 6990
1570 | 4810
1080 | 1,45 | -2,8
-0.11 | 07096 | 07196 | 1,5
0.06 | 14.260
0.5614 | 31.5
1.24 | 29.5
1.16 | 1.0
0.04 | 9.525
0.3750 | 44.5
1.75 | 47.0
1.85 | | 25,400
1,0000 | 50.005
1.9687 | 13.495
0.5313 | 6990
1570 | 4810
1080 | 1.45 | -2.8
-0.11 | 07100 | 07196 | 1.0
0.04 | 14.260
0.5614 | 30.5
1.20 | 29.5
1.16 | 1.0 | 9.525
0.3750 | 44.5
1.75 | 47.0
1.85 | | 25,400
1,0000 | 50.005
1.9687 | 13.495
0.5313 | 6990
1570 | 4810
1080 | 1.45 | -2.8
-0.11 | 07100-S | 07196 | 1.5
0.06 | 14.260
0.5614 | 31.5
1.24 | 29.5
1.16 | 1.0
0.04 | 9.525
0.3750 | 44.5
1.75 | 47,0
1.85 | | 25,400
1,0000 | 50,292
1,9800 | 14.224
0.5600 | 7210
1620 | 4629
1040 | 1,56 | -3.3
-0.13 | 1.44642 | L44610 | 3.5
0.14 | 14.732
0.5800 | 36.6
1.42 | 29.5
1.16 | 1.3
0.05 | 10.668
0.4200 | 44.5
1.75 | 47.0
1.85 | | 25.400
1.0000 | 50,292
1.5800 | 14.224
0.5600 | 7210
1620 | 4620
1040 | 1.56 | -3.3
-0.13 | L44643 | L44610 | 1.3 | 14.732
0.5800 | 31.5
1.24 | 29.5
1.16 | 1.3
0.05 | 10.668
0.4200 | 44.5
1.75 | 47.0
1.85 | | 25,400
1,0000 | 51.994
2.0470 | 15.011
0.5910 | 6990
1570 | 4810
1080 | 1.45 | -2.8
-0.11 | 07100 | 07204 | 1.0
0.04 | 14.268
0.5614 | 30.5
1.20 | 29.5
1.16 | 1.3
0.05 | 12,700
0.5000 | 45.0
1.77 | 48.0
1.89 | ## **Tapered Roller Bearing Equivalent Load Calculation** Equivalent load of ball bearings with combined radial and axial loading, $$F_e = X_i V F_r + Y_i F_a$$ For <u>tapered roller bearings</u>, Timken recommends using X=0.4 and V=1 for all cases, and using the K factor for the specific bearing for Y: $$F_e = 0.4F_r + KF_a$$ F_a is the net axial load including induced axial load and external axial load. ## <u>Direct-mounted</u> Tapered Roller Bearings #### Question: One out of the two paired tapered roller bearings carries majority of the net axial load. But which one though? # Tapered Roller Bearing Equivalent Load Calculation Case: Direct-Mounting ## **Default Inducted Axial Force** $$F_{iA} = \frac{0.47F_{rA}}{K_A}; \quad F_{iB} = \frac{0.47F_{rB}}{K_B}$$ If $$F_{iA} \le (F_{iB} + F_{ae})$$ $$F_{iB} = \frac{0.47F_{rB}}{K_B}$$ $$F_{iA} = \frac{0.47F_{rB}}{K_B} + F_{ae} = F_{iB} + F_{ae}$$ $$F_{eA} = 0.4F_{rA} + K_A F_{iA} \qquad F_{eB} = F_{rB}$$ If $$F_{iA} > (F_{iB} + F_{ae})$$ $$F_{iA} = \frac{0.47F_{rA}}{K_A}$$ $$F_{iB} = \frac{0.47F_{rA}}{K_A} - F_{ae} = F_{iA} - F_{ae}$$ $$F_{eA} = F_{rA} \qquad F_{eB} = 0.4F_{rB} + K_B F_{iB}$$ Majority of the external axial load is carried by one out of the two bearings. # **Tapered Roller Bearing Equivalent Load Calculation** # **Direct Mounting** Bearing A Bearing B F_{iA} F_{ae} If $F_{iA} \leq (F_{iB} + F_{ae})$ $F_{iB} = \frac{0.47F_{rB}}{K_{P}}$ $F_{iA} = \frac{0.47F_{rB}}{K_{R}} + F_{ae} = F_{iB} + F_{ae}$ $F_{eA} = 0.4F_{rA} + K_A F_{iA} \qquad F_{eB} = F_{rB}$ If $F_{iA} > (F_{iB} + F_{ae})$ $F_{iA} = \frac{0.47F_{rA}}{K_A}$ * If calculated equivalent load is less than radial load, then use radial load instead. TechRef: TIMKEN ENGINEERING MANUAL, p.43 $F_{iB} = \frac{0.47F_{rA}}{K_A} - F_{ae} = F_{iA} - F_{ae}$ $F_{eA} = F_{rA} \qquad F_{eB} = 0.4F_{rB} + K_B F_{iB}$ ## Load-Life-Reliability Relation (Tapered Roller Bearing) For <u>ball and cylindrical roller bearings</u>, the load-life-reliability relationship using three-parameter Weibull distribution: $$R = exp\left\{ -\left[\frac{x_D \left(\frac{a_f F_D}{C_{10}}\right)^a - x_0}{\theta - x_0} \right]^b \right\} \qquad R \approx 1 - \left[\frac{x_D \left(\frac{a_f F_D}{C_{10}}\right)^a - x_0}{\theta - x_0} \right]^b \qquad R \ge 0.90$$ For <u>tapered roller bearings</u>, using Timken's two-parameter Weibull distribution (x_0 = 0, θ =4.48, and b=1.5), above equation can be reduced to $$R = exp\left\{-\left[\frac{x_D\left(\frac{a_f F_D}{C_{10}}\right)^a - x_0}{\theta - x_0}\right]^b\right\} = exp\left\{-\left[\frac{x_D\left(\frac{a_f F_D}{C_{10}}\right)^a\right]^b\right\}$$ $$R_D \approx 1 - \left[\frac{x_D}{\theta} \left(\frac{a_f F_D}{C_{10}} \right)^a \right]^b$$ The shaft carries a helical gear with a tangential force of 3980 N, a radial force of 1770 N, and a thrust force of 1690 N at the pitch cylinder with directions shown. The pitch diameter of the gear is 200 mm. The shaft runs at a speed of 800 rev/min, and the span (effective spread) between the direct-mount bearings is 150 mm. The design life is to be 5000 h and an application factor of 1 is appropriate. If the reliability of the bearing set is to be 0.99, select suitable single-row tapered roller Timken bearings. External axial load is in –X direction. Assign left-side bearing as bearing A, right-side bearing as bearing B Assume direct mounting - Gear Load: - tangential force of 3980 N, - radial force of 1770 N, and - thrust force of 1690 N - Pitch Dia=200mm - Location A: single-row tapered-roller Timken bearings - Location B: single-row tapered-roller Timken bearings - Design life is 5000h - Bearing set reliability 0.99 - Application factor is to be 1. - Direct mounting | $F_t = 3980 \cdot N$ | $F_r = 1770 \cdot N$ | $F_a = 1690 \cdot N$ | |---|--|--| | $Trq := F_t \cdot \frac{200}{2}$ | mm=398 N·m | | | $n_D = 800 \cdot \frac{1}{min}$ | | | | $HP \coloneqq Trq \cdot 2 \cdot \pi$ | $\cdot n_D = 44.713 \ hp$ | | | NB := 2 | Bearing Set Reliability | $R_s = 0.99$ | | $R := \left(R_s\right)^{\left(\frac{1}{NB}\right)} =$ | 0.995 | 70
1690 | | $L_{hr} \coloneqq 5000 \cdot hr$ | | 50 | | $L_D := L_{hr} \cdot n_D = 2$ | 2.4 • 108 | 150 | | $x_D := \frac{L_D}{L_{10}} = 2.66$ | 3980 (a) | y 1770
A 1690 | | | $n_D \coloneqq 800 \cdot \frac{1}{min}$ $HP \coloneqq Trq \cdot 2 \cdot \pi$ $NB \coloneqq 2$ $R \coloneqq \left(R_s\right)^{\left(\frac{1}{NB}\right)} =$ $L_{hr} \coloneqq 5000 \cdot hr$ $L_D \coloneqq L_{hr} \cdot n_D = 2$ | $R := (R_s)^{\left(\frac{1}{NB}\right)} = 0.995$ | | Bearing Type | e: Tapered Roller Beari | ng | $a = \frac{10}{3}$ | $R_D = R$ | | | |----------------------|---------------------------|--|--|---|-----------------------------|-------| | Iterate on | K Factor | | 13 | | 1770
3980
1690
x | | | Iteration 1, | Assume K Factor | $K_A = 1.5$ | $K_B := 1.5$ | | 50 | | | Induced Thr | ust Load | $F_{iA} := \frac{0.47 \cdot F_{iA}}{K_{A}}$ | rA = 679.795 N | y
A | 100 150 | | | | | $F_{iB} := \frac{0.47 \cdot F_{iB}}{K_B}$ $F_{iB} + F_{ae} = 25$ | $\frac{rB}{}$ = 831.546 N | $ \begin{array}{c c} & & & & \\ \hline A & & & & \\ \hline R_{ZA} & & & & \\ \end{array} $ | (a) R_{zB} A R_{yA} | 16900 | | Eq. 11-19
(P.589) | If $F_{iA} \leq (F_{iB})$ | $(+F_{ae})$ | $F_{eA} = 0.4F_{rA} + F_{eB} = F_{rB}$ | $K_A(F_{iB}+F_{iB})$ | ae) | | | | If $F_{iA} > (F_{iB})$ | $(r + F_{ae})$ | $F_{eB} = 0.4F_{rB} + F_{eA} = F_{rA}$ | $K_B(F_{iA}-F_{iA})$ | ae) | | | FiA < (FiB+F | ae) | $F_{eA} = 0.4 \cdot F_{rA}$ | $+K_A \cdot (F_{iB} + F_{ae})$ | =4650.14 N | | | $F_{eB} := F_{rB} = 2653.87 \ N$ | Application Factor | $a_f = 1.0$ | | EXAMPLE | E 11-8 | |--|---|--|-------------------------------------|------------------------| | Radial Force @A | $F_D := F_{eA} = 4650.$ | 14 N | | ` | | Catalogue Rating Load | $C_{10} := a_f \cdot F_D \cdot \left(- \right)$ | x_D $\frac{1}{a}$ | =11477.88 N | | | | | $+\theta_1 \cdot (1-R_D)$ | | | | | $C_{10} = 11.48 \text{ kN}$ | | | | | Use Fig. 11.15 (P.586) to pick at 15.400 62.000 19.050 12100 7280 1.0000 2.4409 0.7500 2730 1640 | 1.67 -5.8 15100 1524 | | 31.5 1.3 14.288
1.24 0.05 0.5625 | 55.0 58.0
2.17 2.28 | | From Fig. 11–15, tentatively se
= 12100 N. | elect type TS 15100 cone | and 15245 cup, wh | nich will work: KA =1 | l.67, <i>C</i> 10 | | Radial Force @B | $F_D = F_{eB} = 2653.$ | 87 N | | | | Catalogue Rating Load | $C_{10} \coloneqq a_f \cdot F_D \cdot \left(\begin{array}{c} \\ x_0 \end{array} \right)$ | $\left. \begin{array}{c} x_D \\ \hline + heta_1 \cdot \left(1 - R_D \right)^{ rac{1}{b}} \end{array} \right)^{ rac{1}{a}}$ | =6550.5 N | | | Tentatively select the bearing i | dentical to bearing A | | | | 58.0 2.28 # Induced Thrust Load $F_{iA}\coloneqq 1.67 \qquad K_{B}\coloneqq 1.67$ Induced Thrust Load $F_{iA}\coloneqq \frac{0.47\cdot F_{rA}}{K_{A}}=610.59\ N$ $F_{iB}\coloneqq \frac{0.47\cdot F_{rB}}{K_{B}}=746.9\ N$ $F_{iB}+F_{ae}=2436.9\ N$ FiA < (FiB+Fae) $F_{eA}\coloneqq 0.4\cdot F_{rA}+K_{A}\cdot \left(F_{iB}+F_{ae}\right)=4937.44\ N$ $F_{eB}\coloneqq F_{rB}=2653.87\ N$ Application Factor $a_{f}\coloneqq 1.0$ Although this catalog entry exceeds slightly the tentative selection for bearing A, we will keep it since the reliability of bearing B exceeds 0.995. Radial Force @B $$F_D \coloneqq F_{eB} = 2653.87 \ N$$ Catalogue Rating Load $$C_{10}\!\coloneqq\!a_f\!\cdot\!F_D\!\cdot\!\left(\!\frac{x_D}{x_0\!+\!\theta_1\!\cdot\!\left(1\!-\!R_D\!\right)^{\frac{1}{b}}}\!\right)^{\!\frac{1}{a}}\!=\!6550.5\,\textit{N}$$ Select cone and cup 15100 and 15245, respectively, for both bearing A and B. In Ex. 11-8 bearings A and B (cone 15100 and cup 15245) have C_{10} = 12100 N. What is the reliability of the pair of bearings A and B? Solution: Desired life $$x_D = \frac{L_D}{L_R} = \frac{60 \ L_D n_D}{90 \ 6} = \frac{60.5000 \cdot 80}{90 \cdot 10^6} = 2.67$$ For bearing A, $F_D = F_{eA} = 4938$ N, and $a_f = 1$: $$R_{DA} = 1 - \left[\frac{x_D}{\theta} \left(\frac{a_f F_D}{C_{10}}\right)^a\right]^b = 1 - \left[\frac{2.67}{4.48} \left(\frac{1.493}{12100}\right)^{\frac{10}{3}}\right]^{1.5} = 0.99479$$ For bearing B, $F_D = F_{eB} = 2654$ N, and $a_f = 1$: $$R_{DB} = 1 - \left[\frac{x_D}{\theta} \left(\frac{a_f F_D}{C_{10}} \right)^a \right]^b = 1 - \left[\frac{2.67}{4.48} \left(\frac{1 \cdot 2654}{12100} \right)^{\frac{10}{3}} \right]^{1.5} = 0.99977$$ Reliability of the bearing pair is $$R = R_{DA}R_{DB} = 0.99479 \cdot 0.99977 = 0.99456$$ For the shaft AB, perform a preliminary specification for tapered roller bearings at A and B. A bearing life of 500 million revolutions is desired with a 90 percent combined reliability for the bearing set, assuming distribution data from manufacturer 1 in Table 11–6. Should the bearings be oriented with direct mounting or indirect mounting for the axial thrust to be carried by the bearing at A? Assuming bearings are available with K=1.5, find the required radial rating for each bearing. For this preliminary design, assume an application factor of one. ### Given: $F_{rA} = 1643 \text{ lbf}$ F_{rB} =758 lbf $F_{ae} = 92.8 \text{ lbf}$ # **EXAMPLE 11-42 (Cont'd)** $$F_{iA} = \frac{0.47F_{rA}}{K_A} = \frac{0.47 \cdot 1643}{1.5} = 515 \ lbf$$ $$F_{iB} = \frac{0.47F_{rB}}{K_B} = \frac{0.47 \cdot 758}{1.5} = 238 \ lbf$$ f 3.63 in $F_{iB} = 238 \text{ } lbf$ 3.88 in -> Direct Mounting: $F_{iA} < F_{iB} - F_{ae}$ $$F_{iA} + F_{ae} = 515 + 93 = 608 \, lbf$$ $F_{iB} = 238 \, lbf^{-1}$ Bearing B carries the axial thrust. $$F_{eA} = F_{rA} = 1643 \ lbf$$ $F_{eB} = 0.4F_{rB} + K(F_{iA} + F_{ae}) = 0.4 \cdot 758 + 1.5 \cdot 608 = 1215 \ lbf$ ## **Indirect Mounting:** $$F_{iA} = 515 \ lbf$$ $F_{iB} + F_{ae} = 238 + 93 = 331 \ lbf$ $F_{iA} > F_{iB} + F_{ae}$ Bearing B carries the axial thrust. $$F_{eA} = F_{rA} = 1643 \ lbf$$ $$F_{eB} = 0.4F_{rB} + K(F_{iA} - F_{ae}) = 0.4 \cdot 758 + 1.5 \cdot (515 - 93) = 936 \ lbf$$ Will select indirect mounting since it results in lower F_{eB}. 0.88-in dia. # Tapered Roller Bearing Equivalent Load Calculation # **Direct Mounting** F_{ae} If $$F_{iA} \leq (F_{iB} + F_{ae})$$ $$F_{iB} = \frac{0.47 r_B}{K_B}$$ $$F_{iA} = \frac{0.47F_{rB}}{K_B} + F_{ae} = F_{iB} + F_{ae}$$ $$F_{eA} = 0.4F_{rA} + K_A F_{iA} \qquad F_{eB} = F_{rB}$$ If $$F_{iA} > (F_{iB} + F_{ae})$$ $$F_{iA} = \frac{0.47 r_A}{K_A}$$ $$F_{iB} = \frac{0.47F_{rA}}{K_A} - F_{ae} = F_{iA} - F_{ae}$$ $$F_{eA} = F_{rA} \qquad F_{eB} = 0.4F_{rB} + K_B F_{iB}$$ ## **Indirect Mounting** If $$F_{iA} \leq (F_{iB} - F_{ae})$$ $$F_{iB} = \frac{0.47F_{rB}}{K_B}$$ $$F_{iA} = \frac{0.47F_{rB}}{K_B} - F_{ae} = F_{iB} - F_{ae}$$ $$F_{eA} = 0.4F_{rA} + K_A F_{iA} \qquad F_{eB} = F_{rB}$$ If $$F_{iA} > (F_{iB} - F_{ae})$$ $$F_{iA} = \frac{0.47F_{rA}}{K_A}$$ $$F_{iB} = \frac{0.47 r_A}{K_A} + F_{ae} = F_{iA} + F_{ae}$$ $$F_{eA} = F_{rA} \qquad F_{eB} = 0.4F_{rB} + K_B F_{iB}$$ * If calculated equivalent load is less than radial load, then use radial load instead. TechRef: TIMKEN ENGINEERING MANUAL, p.43 **Tapered Roller Bering Frictional Torque Calculation** ## **Running Torque** Assume the bearing running torque has stabilized after an initial period referred to as running-in. | $Trq = k_1 G_1(n\mu)^{0.62} \left(\frac{f_3 F_r}{K}\right)^{0.3}$ | | |--|--| | $n_{min} = \frac{k_2}{\mu G_2} \left(\frac{f_2 F_r}{K}\right)^{2/3}$ | | n = shaft speed (rpm) $k_1 = 2.56x10^{-6}$ (N-m); or $k_1 = 3.54 \times 10^{-5} \text{ (in-lbf)}$ $k_2 = 625$ (metric) or 1700 (inch) μ = lubricant dynamic viscosity at operating temperature (centipoise) f_3 = combined load factor f_2 = combined load factor | | | | | Bea | ring Dime | nsions | | | | | 0.0 | | *2009000000 | | |-------------------------|----------------------|-----------------------|------------------------------------|---------------------|------------------------|------------------------------|---------------------|------------------------|--------------------------|--------------------------|----------------|----------------|-------------|---------------------| | | | | | Shaft | | H | ousing | | | | 960 | metry f | actors | Bearin | | Width
B | Width
C | Eff. Ctr. | Max Shaft
Fillet Radius
R(5) | | king
ler Dia.
ds | Max Housing
Fillet Radius | | king
der Dia.
Ds | Ca
A _a (6) | ge
Α _h (7) | G ₁ | G ₂ | Cg | Weigh | | mm | mm | mm | mm | mm | mm | nm | mm | mm du | mm | mm | | | | kg | | in. | in. | in. | in. | in. | in. | in | in. | in. | in. | in. | | | | lbs. | | 10.785
0.4246 | 7.938 0.3125 | -3.0
-0.12 | 0.5
0.02 | 12.5 0.49 | 13.0 0.51 | 1.3
0.05 | 29.0
1.14 | 26.0 1.02 | - 0.3
-0.01 | 1.5
0.06 | 1.7 | 3.2 | 0.0308 | 0.05
0.10 | | 10.785
0.4246 | 7.938 0.3125 | -3.0
-0.12 | 1.3
0.05 | 13.5 0.53 | 15.0 0.59 | 1.3
0.05 | 29.0
1.14 | 26.0 1.02 | - 0.3
-0.01 | 1.5 0.06 | 1.7 | 3.2 | 0.0308 | 0.05
0.10 | | 10.988
0.4326 | 8.730
0.3437 | -2.5
-0.10 | 1.3
0.05 | 15.5
0.61 | 17.5 0.69 | 1.3
0.05 | 32.0 1.26 | 29.0 1.14 | 0.1
0.00 | 1.2
0.05 | 2.3 | 4.1 | 0.0355 | 0.05
0.13 | | 10.785
0.4246 | 7.938 0.3125 | -3.0
-0.12 | 0.8
0.03 | 15.5
0.61 | 16.5 0.65 | 1.3
0.05 | 29.0
1.14 | 26.0 1.02 | - 0.3
-0.01 | 1.5
0.06 | 1.7 | 3.2 | 0.0308 | 0.04 | | 10.988
0.4326 | 8.730
0.3437 | -2.5
-0.10 | 0.8
0.03 | 17.5
0.69 | 17.5 0.69 | 1.3
0.05 | 32.0 1.26 | 29.0
1.14 | 0.1
0.00 | 1.2
0.05 | 2.3 | 4.1 | 0.0355 | 0.05
0.12 | | 10.988
0.4326 | 8.730 0.3437 | -2.5
-0.10 | 1.3
0.05 | 17.0
0.67 | 18.5 0.73 | 1.3
0.05 | 32.0 1.26 | 29.0 1.14 | 0.1
0.00 | 1.2 0.05 | 2.3 | 4.1 | 0.0355 | 0.05
0.12 | | 14.072
0.5540 | 11.112
0.4375 | -5.1
-0.20 | 1.5
0.06 | 16.5
0.65 | 19.0 0.75 | 0.8
0.03 | 34.0
1.34 | 33.0
1.30 | -0.4
-0.02 | 1.3
0.06 | 3.1 | 2.9 | 0.0329 | 0.08
0.18 | | 10.988
0.4326 | 8.730
0.3437 | -2.5
-0.10 | 0.8
0.03 | 19.0
0.75 | 19.5 0.77 | 1.3
0.05 | 32.0 1.26 | 29.0 1.14 | 0.1
0.00 | 1.2
0.05 | 2.3 | 4.1 | 0.0355 | 0.04
0.11 | | 10.998
0.4330 | 8.712 0.3430 | - 3.3
-0.13 | 1.3
0.05 | 19.5
0.77 | 21.5 0.85 | 1.3
0.05 | 32.5 1.28 | 29.0
1.14 | - 0.3
-0.02 | 1.4
0.06 | 3.0 | 5.4 | 0.0348 | 0.06
0.11 | | 11.153 0.4391 | 9.525 0.3750 | -1.5
-0.06 | 1.3
0.05 | 20.5 0.81 | 22.0 0.87 | 1.3
0.05 | 37.0 1.46 | 34.0
1.34 | 0.5
0.02 | 1.6
0.07 | 2.9 | 5.6 | 0.0404 | 0.08
0.16 | | 14.681
0.5780 | 11.112
0.4375 | -5.1
-0.20 | 1.3
0.05 | 20.0 0.79 | 21.5 0.85 | 2.0
0.08 | 37.5
1.48 | 34.0
1.34 | 0,3
0.01 | 1.4
0.06 | 4.2 | 4.0 | 0.0384 | 0.09 | | 14.288
0.5625 | 9.525 0.3750 | -1.3
-0.05 | 1.5
0.06 | 22.5 0.89 | 24.5 0.96 | 1.5
0.06 | 39.5
1.56 | 34.5 1.36 | 1.5
0.05 | 0.7
0.03 | 3.4 | 4.6 | 0.0465 | 0.10
0.22 | | 16.670
0.6563 | 13.495 0.5313 | -5.8
-0.23 | 1.5
0.06 | 21.0 0.83 | 23.0 0.91 | 1.5
0.06 | 39.0
1.54 | 36.5 1.44 | 0.4
0.01 | 1.9
0.08 | 5.3 | 4.5 | 0.0423 | 0.12
0.27 | | 14.381
0.5662 | 11.112
0.4375 | -4.1
-0.16 | 1.5
0.06 | 21.0 0.83 | 23.5 0.93 | 1.3
0.05 | 42.5 1.67 | 40.5 1.59 | 0.2
0.00 | 1.3
0.05 | 5.8 | 5.5 | 0.0448 | 0.14
0.29 | | 21.539
0.8480 | 14.288
0.5625 | -9.1
-0.36 | 0.8
0.03 | 21.5 0.85 | 22.0 0.87 | 1.3
0.05 | 44.5 1.75 | 42.0
1.65 | 2.2
0.09 | 0.7 0.03 | 8.0 | 4.0 | 0.0452 | 0.19
0.44 | | 21.539
0.8480 | 17.462 0.6875 | -9.1
-0.36 | 0.8
0.03 | 21.5 0.85 | 22.0 0.87 | 3.5
0.14 | 44.5 1.75 | 39.0
1.54 | 2.2 0.09 | 0.7 0.03 | 8.0 | 4.0 | 0.0452 | 0.21
0.47 | | 21.839
0.8598 | 15.875
0.6250 | - 5.8
-0.23 | 0.8
0.03 | 26.4
1.03 | 29.0 1.14 | 2.3
0.09 | 50.0 1.97 | 43.0 1.69 | 1.3
0.05 | 2.0
0.08 | 7.0 | 4.1 | 0.0558 | 0.25
0.57 | TechRef: TIMKEN Tapered Roller Bearing Catalogue, p.51 ## **Running Torque** Assume the bearing running torque has stabilized after an initial period referred to ²⁸ as running-in. $$Trq = k_1 G_1 (n\mu)^{0.62} \left(\frac{f_3 F_r}{K}\right)^{0.3}$$ $$n_{min} = \frac{k_2}{\mu G_2} \left(\frac{f_2 F_r}{K}\right)^{2/3}$$ n = shaft speed (rpm) $k_1 = 2.56 \times 10^{-6} \text{ (N-m)}$; or $k_1 = 3.54 \times 10^{-5}$ (in-lbf) $k_2 = 625$ (metric) or 1700 (inch) μ = lubricant dynamic viscosity at operating temperature (centipoise) f_3 = combined load factor f_2 = combined load factor The torque equations will be underestimated if n is less than n_{min} . **Load Condition** f3 and f2 $KF_a/F_r > 2.0$ f3 = KFa/Fr $f_2 = f_3 + 0.8$ $0.47 \le KF_a/F_r \le 2.0$ Use graph above $f_3 = 0.06$ $KF_a/F_r < 0.47$ $f_3 = 1.78$ 2.6 2.4 2.2 2.0 Combined load factors, f₁ and f₂ 1.8 1.0 0.8 0.6 0.4 0.2 0.2 1.0 1.4 KFa/Fr Sichuan University - Pittsburgh Institute # **Example** Calculate the running torque of a Timken TS 05075X tapered roller bearing with shaft speed of 4000rpm and lubricated with SAE 30 oil operated at 65°C. $$F_r$$ =3000 N, F_a =1500 N K=1.64, $\frac{KF_a}{F_r}$ = 0.82 f₃=0.6 (from chart) Viscosity @65°C=25cP | Bea | ring Dimensi | ions | | | Part Number | | | | | | | |--------------------------|------------------|------------------|--|--------------|-------------------------|-------------------------|--|------------------------|--------------------------|--------|---------| | Bore O.D | | | | Load Ratings | | | | | | | | | | 0.D.
D | Width
T | Dynamic ⁽¹⁾
C ₁ | Fact
e | ors ⁽²⁾
Y | Dyna
C ₉₀ | mic ⁽³⁾
C _{a90} | Factors ⁽²⁾ | Static
C ₀ | Inner | Outer | | mm
in. | mm
in. | mm
in. | N
lbf | | | N
lbf | N
lbf | | N
Ibf | | | | 1 9.050
0.7500 | 47.000
1.8504 | 14.381
0.5662 | 26700 6010 | 0.36 | 1.68 | 6930
1560 | 4230
952 | 1.64 | 25400 5720 | 05075X | 05185-S | | | Bearing Dimensions | | | | | | | | | | | | antore | | |------------------|--------------------|---------------|--|--------------|------------------------------------|--|------------------|------------------------------------|-------------------------------------|-------------------------------------|------------------|----------------|--------|--------------| | Width
B | | | | Shaft | | Housing | | | | | Geometry Factors | | | Bearing | | | Width
C | Eff. Ctr. | Max Shaft
Fillet Radius
R ⁽⁵⁾ | | king
Ier Dia.
d _b | Max Housing
Fillet Radius
r ⁽⁵⁾ | | king
der Dia.
D _b | Ca
A _a ⁽⁶⁾ | ge
A _b ⁽⁷⁾ | G ₁ | G ₂ | Cg | Weight | | mm
in. | | | kg
lbs. | | 21.000
0.8268 | 16.000
0.6299 | -6.1
-0.24 | 1.0
0.04 | 23.0
0.90 | 27.5
1.08 | 2.0
0.08 | 43.0 1.69 | 37.5
1.48 | 1.4
0.05 | 1.4
0.06 | 6.1 | 4.6 | 0.0526 | 0.20
0.42 | Torque = $$k_1 G_1(n\mu)^{0.62} \left(\frac{f_3 F_r}{K}\right)^{0.3}$$ = $2.56 \cdot 10^{-6} \cdot 6.1 \cdot (4000 \cdot 25)^{0.62} \left(\frac{0.6 \cdot 3000}{1.64}\right)^{0.3} = 0.161 N \cdot m$ # **Selection of Tapered Roller Bearing** | 4 | outside | 525 | 500 m | ng at
pm for
ours L 10 | fac- | eff. | part nu | imbers | max
shaft
fillet | +44 | shot | cing
ilder | max
hous- | | sho | cking
ulder | |------------------|----------------------|------------------|-----------------------|------------------------------|------|------------------------|--------------|---------|------------------------|------------------|--------------|----------------|------------------|------------------|------------------|----------------------| | bore | diameter | width | one-
row
radial | thrust | tor | load
center | cone | cup | fillet
radius | width | diam | eters | fillet
radius | width | diar | neters | | d | D | Т | N
Ibf | N
Ibf | K | a ^② | | | R® | В | d_{b} | d _a | r® | C | D _b | D _a | | 25.400
1.0000 | 66.421 2.6150 | 23.812
0.9375 | 18400
4140 | 8000
1800 | 2.30 | - 9.4
-0.37 | 2687 | 2631 | 1.3
0.05 | 25.433
1.0013 | 33.5
1.32 | 31.5
1.24 | 1.3
0.05 | 19.050
0.7500 | 58.0 2.28 | 60.0 2.36 | | 25.400
1.0000 | 68.262
2.6875 | 22,225
0.8750 | 15300
3440 | 10900
2450 | 1.40 | -5.1
-0.20 | 02473 | 02420 | 0.8
0.03 | 22.225
0.8750 | 34.5
1.36 | 33.5
1.32 | 1.5
0.06 | 17.462
0.6875 | 59.0 2.32 | 63.0
2.48 | | 25.400
1.0000 | 72.233 2.8438 | 25.400
1.0000 | 18400
4140 | 17200
3870 | 1.07 | - 4.6
-0.18 | HM88630 | HM88610 | 0.8
0.03 | 25.400
1.0000 | 39.5
1.56 | 39.5
1.56 | 2.3
0.09 | 19.842
0.7812 | 60.0 2.36 | 69.6
2.72 | | 25,400
1.0000 | 72.626
2.8593 | 30.162
1.1875 | 22700
5110 | 13000
2910 | 1.76 | - 10.2
-0.40 | 3189 | 3120 | 0.8
0.03 | 29.997
1.1810 | 35.5
1.40 | 35,0
1.38 | 3.3
0.13 | 23.812
0.9375 | 61.0 2.40 | 67. 0
2.64 | | 26.157
1.0298 | 62.000 2.4409 | 19.050
0.7500 | 12100
2730 | 7280
1640 | 1.67 | - 5.8
-0.23 | 15103 | 15245 | 0.8
0.03 | 20.638
0.8125 | 33.0
1.30 | 32.5
1.28 | 1.3
0.05 | 14.288
0.5625 | 55.0
2.17 | 58.0
2.28 | | 26.162
1.0300 | 63.100
2.4843 | 23.812
0.9375 | 18400
4140 | 8000
1800 | 2.30 | - 9.4
-0.37 | 2682 | 2630 | 1.5
0.06 | 25.433
1.0013 | 34.5
1.36 | 32.0
1.26 | 0.8 | 19.050
0.7500 | 57.0 2.24 | 59.0 2.32 | | 26.162
1.0300 | 66.421
2.6150 | 23.812
0.9375 | 18400
4140 | 8000
1800 | 2.30 | - 0.4 | 2682
CINI | GLE-R | OW | 25.433
C/T/D | A I C | 32.6 | 13 | 10.050 | 58.0
2.28 | 60. 6 | Sichuan University - Pittsburgh Institute