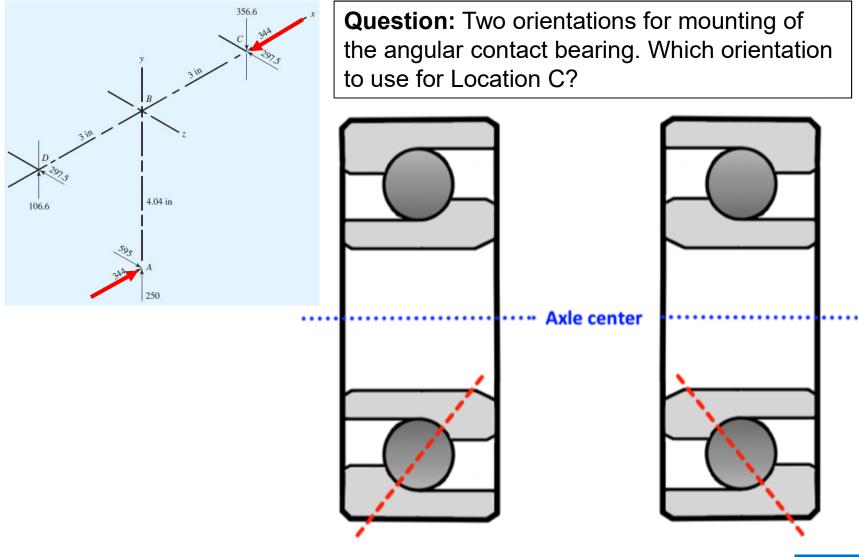
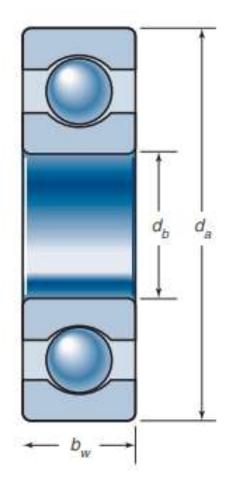

Bearing Mounting Issues



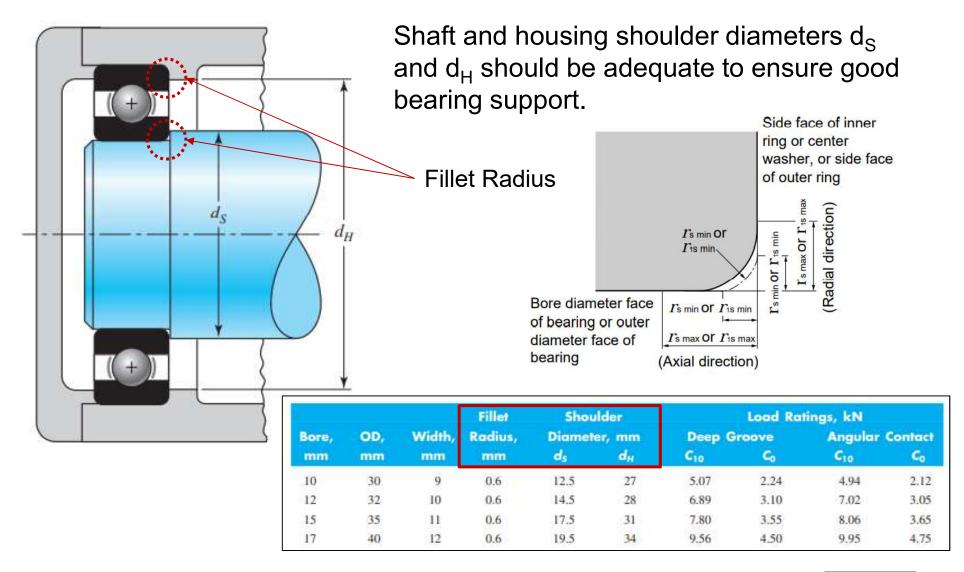
Deep Groove vs. Angular Contact Ball Bearing



Mounting of Angular Contact Ball Bearings

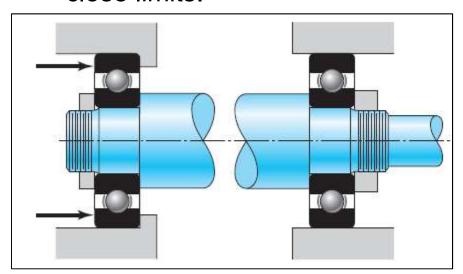
Critical Bearing Design Parameters

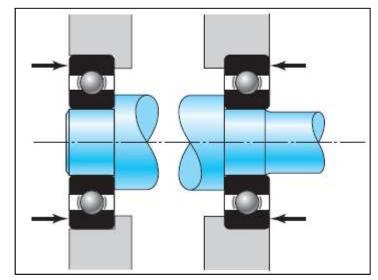
			Fillet	Shou	lder		Load Ra	tings, kN	
Bore,	OD,	Width,	Radius,	Diamet	er, mm	Deep G	roove	Angular	Contact
mm	mm	mm	mm	ds	d _H	C ₁₀	C ₀	C10	C _o
10	30	9	0.6	12.5	27	5.07	2.24	4.94	2.12
12	32	10	0.6	14.5	28	6.89	3.10	7.02	3.05
15	35	11	0.6	17.5	31	7.80	3.55	8.06	3.65
17	40	12	0.6	19.5	34	9.56	4.50	9.95	4.75


d_b: Bore

d_a: Outer Diameter

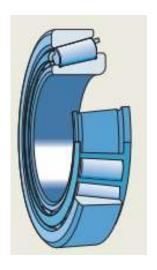
b_w: Width

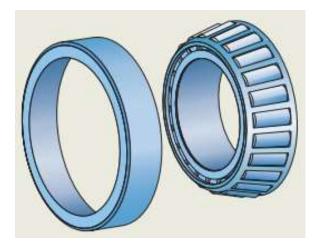



Critical Bearing Design Parameters

Typical Bearing Mounting

- One ball bearing at each end,
- One tapered roller bearing at each end, or
- A ball bearing at one end and a straight roller bearing at the other.
- One of the bearings usually has the added function of positioning or axially locating the shaft.
- The housing bore and shaft outside diameter must be held to very close limits.





Instructor: Ping C. Sui, Ph.D. ME 1029 Machine Design 2

Fall 2021

11–9 Selection of Tapered Roller Bearings

Tapered Roller Bearings

Tapered roller bearings are more complicated than ball/cylindrical roller bearings.

Four components of a tapered roller bearing assembly:

- Cone (inner ring)
- Cup (outer ring)
- Tapered rollers
- Cage (spacer-retainer)

Advantages over Ball Bearing:

- Greater load-carrying capacity
- Carrying both <u>radial</u> and <u>thrust</u> (axial) loads, or any combination of the two, at the same time.

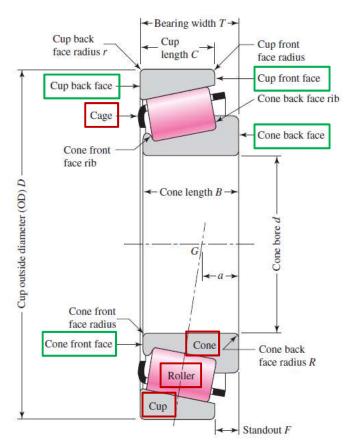
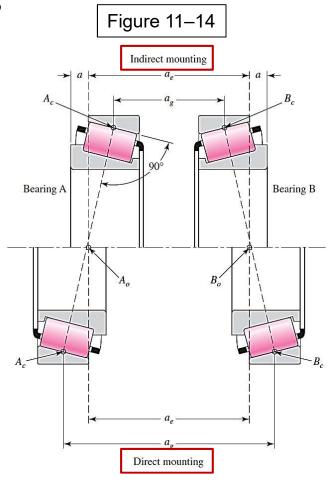


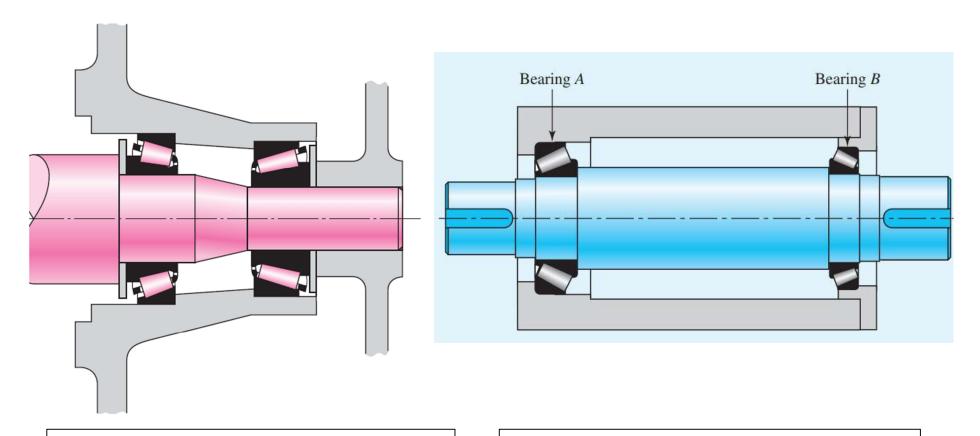
Figure 11-13

Bearing Preload, Mounting, Alignment, and Fit


Mounting of Tapered Roller Bearings

Even when an external thrust load is not present, the <u>radial load will induce a thrust reaction</u> within the bearing because of the taper.

To avoid the separation of the races and the rollers, it is common to use at least two tapered roller bearings on a shaft.

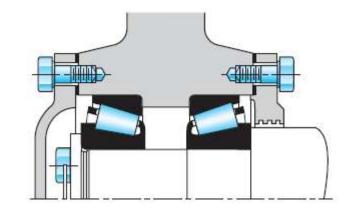

<u>Direct mounting</u>: two bearings mounted with the cone backs facing each other

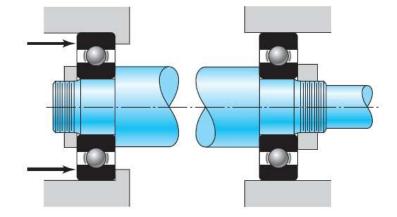
<u>Indirect mounting</u>: with the cone fronts facing each other

Load Transmission of Tapered Roller Bearings

Indirect Mounting

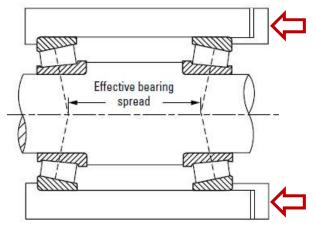
- Cone fronts facing each other
- Applied preload from ID side


Direct mounting:

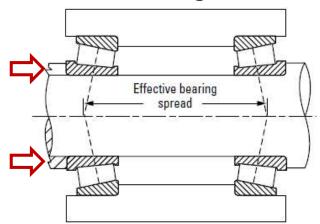

- Cone backs facing each other
- Applied preload from ID side

Bearing Preload

- Objective of preloading is to remove the internal clearance to increase the fatigue life, and to decrease the shaft slope at the bearing.
- Preloading of straight roller bearings may be obtained by using an interference fit for the outer ring.
- Ball bearings are usually preloaded by the axial load built in during assembly by the differences in widths of the inner and outer rings.
- It is always good practice to follow manufacturers' recommendations in determining preload, since too much will lead to early failure.



Preload Setting - Direct vs. Indirect Mounting


Tapered roller bearings are designed to take both radial and thrust loading. Under radial loads, a force is generated in the axial direction that must be counteracted. As a result, tapered roller bearings are normally adjusted against a second bearing.

Direct Mounting

- The outer ring is used to adjust the bearing setting
- The outer ring is usually set in position by an outer-ring follower or mounted in an outer-ring carrier.

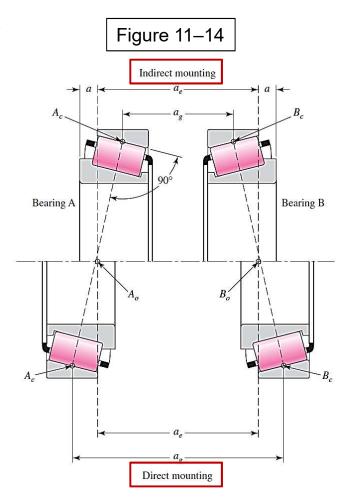
Indirect Mounting

 Bearing setting is typically achieved by clamping against one of the inner rings.

Tapered Roller Bearing Equivalent Loading

Induced Radial Load on Tapered Roller Bearing

A radial load on a tapered roller bearing will induce a thrust reaction. Loading zone includes about half the rollers (approximately 180°).


F_i: <u>induced thrust load</u> from a radial load with a 180° load zone, Timken provides the equation

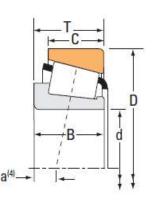
$$F_i = \frac{0.47F_r}{K}$$

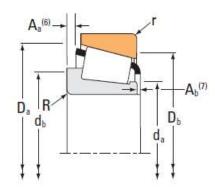
where the K factor is geometry-specific, and is the ratio of the radial load rating to the thrust load rating.

Recommended K factor in the preliminary selection process:

- K=1.5 for a radial bearing
- K=0.75 for a steep angle bearing

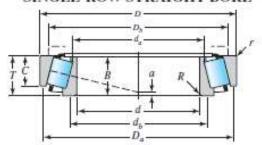
Timken Taper Roller Bearing Catalogue


TAPERED ROLLER BEARINGS


SINGLE-ROW • TYPE TS

TYPE TS

Fig. 11-15 in the textbook is an example table for singlerow tapered roller bearings



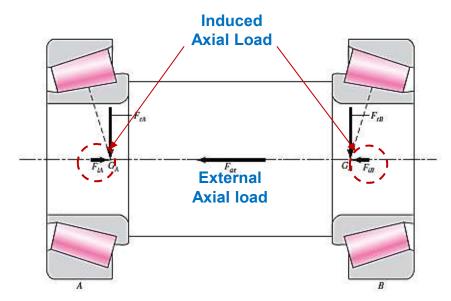
Bea	aring Dimensi	ions								Part Number		
						Load Ratings						
Bore d	0.D. D	Width T	Dynamic ⁽¹⁾ C ₁	Fact e	ors ⁽²⁾ Y	Dyna C ₉₀	mic ⁽³⁾ C _{a90}	Factors ⁽²⁾ K	Static C ₀	Inner	Outer	
mm in.	mm in.	mm in.	N Ibf			N lbf	N Ibf		N lbf			
19.050 0.7500	56.896 2.2400	19.368 0.7625	45400 10200	0.31	1.95	11800 2650	6200 1390	1.90	45300 10200	1775	1729	
19.987 0.7869	46.982 1.8497	14.381 0.5662	26700 6010	0.36	1.68	6930 1560	4230 952	1.64	25400 5720	05079	05185/	
19.987 0.7869	46.990 1.8500	15.250 0.6004	26700 6010	0.36	1.68	6930 1560	4230 952	1.64	25400 5720	05079	05186	
19.987 0.7869	47.000 1.8504	14.381 0.5662	26700 6010	0.36	1.68	6930 1560	4230 952	1.64	25400 5720	05079	05185	
19.987 0.7869	47.000 1.8504	14.381 0.5662	26700 6010	0.36	1.68	6930 1560	4230 952	1.64	25400 5720	05079	05185-3	

SINGLE-ROW STRAIGHT BORE

Figure 11-15

		000	9						co	ne	36		cu	p		
F1000	outside	Total delica	500 n	ng at pm for ours L ₁₀	fac-	eff.	part n	umbers	max shaft	Section 4.	abou	king ilder	max hous-	width	sho	cking sulder
bons	diameter	width	row radial	thrust	tor	load center	cone	cup	fillet radius	width	dum	eten	fillet radius	width	dis	noters :
d	D	T	N lbf	N lbf	K	a©		-	R®	В	db	da	гO	С	D _b	D _a
25,000 0.9843	52,000 2.0472	16.250 0.6398	8190 1840	5260 1180	1.56	-3.6 -0.14	♦ 30205	♦ 30205	1.0	15,000 0.5906	38.5 1.20	29.0 1.14	1.0 0.04	13,000 0,5118	46,0 1.81	48.5 1.91
25.000 0.9843	52,000 2.0472	19.250 0.7579	9520 2140	9510 2140	E.00	-3.0 -0.12	◆32205-B	◆32205-B	1.0 0.04	18,000 0.7087	34.0 1.34	31.0 1.22	0.04	15,000 0,5906	43.5 1.71	49.5 1.95
25,000 0.9843	52,000 2,0472	22,000 0.8661	13200 2980	7960 1790	1.66	-7.6 -0.30	33205	♦ 33205	1.0 0.04	22.000 0.8661	34.0 1.34	30.5 1.20	1.0 0.04	18.900 0.7087	44.5 1.75	49.0 1.93
25.000 0.9843	62,000 2,4409	18.250 0.7185	13000 2930	6680 1500	1.95	-5.1 -0.20	◆ 30305	◆38305	1.5 0.06	17,000 0.6693	32.5 1.28	30.0 1.18	1.5 0.06	15.000 0.5906	55.0 2.17	57.8 2.24
25.000 0.9843	62.000 2.4409	25.250 0.9941	17400 3910	8930 2010	1.95	-9,7 -0.38	+ 32305	◆32305	1.5 0.06	24.900 0.9449	35.0 1.38	31.5 1.24	1.5	20,000 0,7874	54.0 2.13	57.0 2.24
25.159 0.9905	50.005 1.9687	13.495 0.5313	6990 1570	4810 1080	1,45	-2,8 -0.11	07096	07196	1,5 0.06	14.260 0.5614	31.5 1.24	29.5 1.16	1.0 0.04	9.525 0.3750	44.5 1.75	47.0 1.85
25,400 1,0000	50.005 1.9687	13.495 0.5313	6990 1570	4810 1080	1.45	-2.8 -0.11	07100	07196	1.0 0.04	14.260 0.5614	30.5 1.20	29.5 1.16	1.0	9.525 0.3750	44.5 1.75	47.0 1.85
25,400 1,0000	50.005 1.9687	13.495 0.5313	6990 1570	4810 1080	1.45	-2.8 -0.11	07100-S	07196	1.5 0.06	14.260 0.5614	31.5 1.24	29.5 1.16	1.0 0.04	9.525 0.3750	44.5 1.75	47,0 1.85
25,400 1,0000	50,292 1,9800	14.224 0.5600	7210 1620	4629 1040	1,56	-3.3 -0.13	1.44642	L44610	3.5 0.14	14.732 0.5800	36.6 1.42	29.5 1.16	1.3 0.05	10.668 0.4200	44.5 1.75	47.0 1.85
25.400 1.0000	50,292 1.5800	14.224 0.5600	7210 1620	4620 1040	1.56	-3.3 -0.13	L44643	L44610	1.3	14.732 0.5800	31.5 1.24	29.5 1.16	1.3 0.05	10.668 0.4200	44.5 1.75	47.0 1.85
25,400 1,0000	51.994 2.0470	15.011 0.5910	6990 1570	4810 1080	1.45	-2.8 -0.11	07100	07204	1.0 0.04	14.268 0.5614	30.5 1.20	29.5 1.16	1.3 0.05	12,700 0.5000	45.0 1.77	48.0 1.89

Tapered Roller Bearing Equivalent Load Calculation


Equivalent load of ball bearings with combined radial and axial loading,

$$F_e = X_i V F_r + Y_i F_a$$

For <u>tapered roller bearings</u>, Timken recommends using X=0.4 and V=1 for all cases, and using the K factor for the specific bearing for Y:

$$F_e = 0.4F_r + KF_a$$

F_a is the net axial load including induced axial load and external axial load.

<u>Direct-mounted</u> Tapered Roller Bearings

Question:

One out of the two paired tapered roller bearings carries majority of the net axial load. But which one though?

Tapered Roller Bearing Equivalent Load Calculation Case: Direct-Mounting

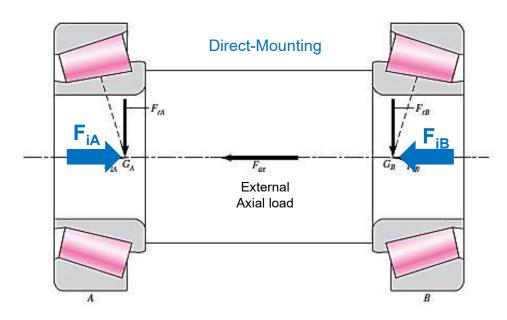
Default Inducted Axial Force

$$F_{iA} = \frac{0.47F_{rA}}{K_A}; \quad F_{iB} = \frac{0.47F_{rB}}{K_B}$$

If
$$F_{iA} \le (F_{iB} + F_{ae})$$

$$F_{iB} = \frac{0.47F_{rB}}{K_B}$$

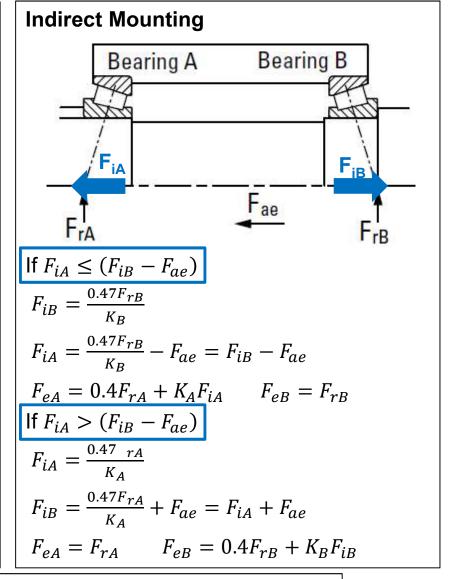
$$F_{iA} = \frac{0.47F_{rB}}{K_B} + F_{ae} = F_{iB} + F_{ae}$$


$$F_{eA} = 0.4F_{rA} + K_A F_{iA} \qquad F_{eB} = F_{rB}$$

If
$$F_{iA} > (F_{iB} + F_{ae})$$

$$F_{iA} = \frac{0.47F_{rA}}{K_A}$$

$$F_{iB} = \frac{0.47F_{rA}}{K_A} - F_{ae} = F_{iA} - F_{ae}$$


$$F_{eA} = F_{rA} \qquad F_{eB} = 0.4F_{rB} + K_B F_{iB}$$

Majority of the external axial load is carried by one out of the two bearings.

Tapered Roller Bearing Equivalent Load Calculation

Direct Mounting Bearing A Bearing B F_{iA} F_{ae} If $F_{iA} \leq (F_{iB} + F_{ae})$ $F_{iB} = \frac{0.47F_{rB}}{K_{P}}$ $F_{iA} = \frac{0.47F_{rB}}{K_{R}} + F_{ae} = F_{iB} + F_{ae}$ $F_{eA} = 0.4F_{rA} + K_A F_{iA} \qquad F_{eB} = F_{rB}$ If $F_{iA} > (F_{iB} + F_{ae})$ $F_{iA} = \frac{0.47F_{rA}}{K_A}$

* If calculated equivalent load is less than radial load, then use radial load instead. TechRef: TIMKEN ENGINEERING MANUAL, p.43

 $F_{iB} = \frac{0.47F_{rA}}{K_A} - F_{ae} = F_{iA} - F_{ae}$

 $F_{eA} = F_{rA} \qquad F_{eB} = 0.4F_{rB} + K_B F_{iB}$

Load-Life-Reliability Relation (Tapered Roller Bearing)

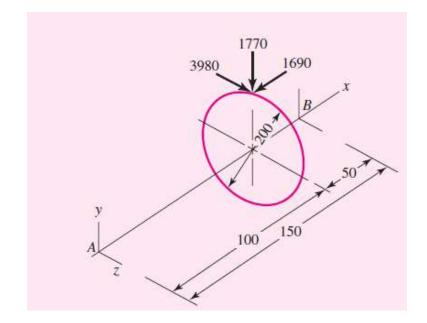
For <u>ball and cylindrical roller bearings</u>, the load-life-reliability relationship using three-parameter Weibull distribution:

$$R = exp\left\{ -\left[\frac{x_D \left(\frac{a_f F_D}{C_{10}}\right)^a - x_0}{\theta - x_0} \right]^b \right\} \qquad R \approx 1 - \left[\frac{x_D \left(\frac{a_f F_D}{C_{10}}\right)^a - x_0}{\theta - x_0} \right]^b \qquad R \ge 0.90$$

For <u>tapered roller bearings</u>, using Timken's two-parameter Weibull distribution (x_0 = 0, θ =4.48, and b=1.5), above equation can be reduced to

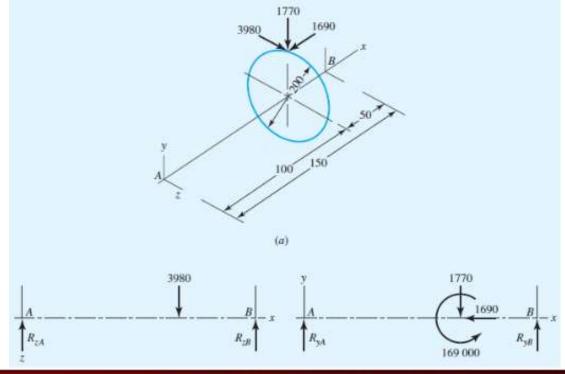
$$R = exp\left\{-\left[\frac{x_D\left(\frac{a_f F_D}{C_{10}}\right)^a - x_0}{\theta - x_0}\right]^b\right\} = exp\left\{-\left[\frac{x_D\left(\frac{a_f F_D}{C_{10}}\right)^a\right]^b\right\}$$

$$R_D \approx 1 - \left[\frac{x_D}{\theta} \left(\frac{a_f F_D}{C_{10}} \right)^a \right]^b$$


The shaft carries a helical gear with a tangential force of 3980 N, a radial force of 1770 N, and a thrust force of 1690 N at the pitch cylinder with directions shown. The pitch diameter of the gear is 200 mm. The shaft runs at a speed of 800 rev/min, and the span (effective spread) between the direct-mount bearings is 150 mm. The design life is to be 5000 h and an application factor of 1 is appropriate.

If the reliability of the bearing set is to be 0.99, select suitable single-row

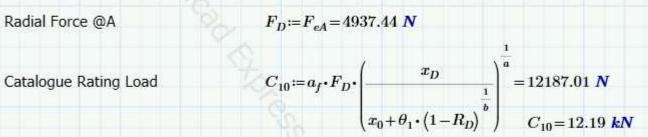
tapered roller Timken bearings.


External axial load is in –X direction. Assign left-side bearing as bearing A, right-side bearing as bearing B

Assume direct mounting

- Gear Load:
 - tangential force of 3980 N,
 - radial force of 1770 N, and
 - thrust force of 1690 N
- Pitch Dia=200mm
- Location A: single-row tapered-roller Timken bearings
- Location B: single-row tapered-roller Timken bearings
- Design life is 5000h
- Bearing set reliability 0.99
- Application factor is to be 1.
- Direct mounting

$F_t = 3980 \cdot N$	$F_r = 1770 \cdot N$	$F_a = 1690 \cdot N$
$Trq := F_t \cdot \frac{200}{2}$	mm=398 N·m	
$n_D = 800 \cdot \frac{1}{min}$		
$HP \coloneqq Trq \cdot 2 \cdot \pi$	$\cdot n_D = 44.713 \ hp$	
NB := 2	Bearing Set Reliability	$R_s = 0.99$
$R := \left(R_s\right)^{\left(\frac{1}{NB}\right)} =$	0.995	70 1690
$L_{hr} \coloneqq 5000 \cdot hr$		50
$L_D := L_{hr} \cdot n_D = 2$	2.4 • 108	150
$x_D := \frac{L_D}{L_{10}} = 2.66$	3980 (a)	y 1770 A 1690
	$n_D \coloneqq 800 \cdot \frac{1}{min}$ $HP \coloneqq Trq \cdot 2 \cdot \pi$ $NB \coloneqq 2$ $R \coloneqq \left(R_s\right)^{\left(\frac{1}{NB}\right)} =$ $L_{hr} \coloneqq 5000 \cdot hr$ $L_D \coloneqq L_{hr} \cdot n_D = 2$	$R := (R_s)^{\left(\frac{1}{NB}\right)} = 0.995$

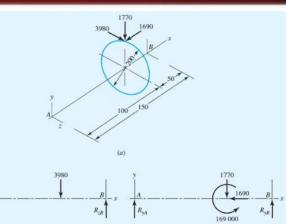

Bearing Type	e: Tapered Roller Beari	ng	$a = \frac{10}{3}$	$R_D = R$		
Iterate on	K Factor		13		1770 3980 1690 x	
Iteration 1,	Assume K Factor	$K_A = 1.5$	$K_B := 1.5$		50	
Induced Thr	ust Load	$F_{iA} := \frac{0.47 \cdot F_{iA}}{K_{A}}$	rA = 679.795 N	y A	100 150	
		$F_{iB} := \frac{0.47 \cdot F_{iB}}{K_B}$ $F_{iB} + F_{ae} = 25$	$\frac{rB}{}$ = 831.546 N	$ \begin{array}{c c} & & & & \\ \hline A & & & & \\ \hline R_{ZA} & & & & \\ \end{array} $	(a) R_{zB} A R_{yA}	16900
Eq. 11-19 (P.589)	If $F_{iA} \leq (F_{iB})$	$(+F_{ae})$	$F_{eA} = 0.4F_{rA} + F_{eB} = F_{rB}$	$K_A(F_{iB}+F_{iB})$	ae)	
	If $F_{iA} > (F_{iB})$	$(r + F_{ae})$	$F_{eB} = 0.4F_{rB} + F_{eA} = F_{rA}$	$K_B(F_{iA}-F_{iA})$	ae)	
FiA < (FiB+F	ae)	$F_{eA} = 0.4 \cdot F_{rA}$	$+K_A \cdot (F_{iB} + F_{ae})$	=4650.14 N		

 $F_{eB} := F_{rB} = 2653.87 \ N$

Application Factor	$a_f = 1.0$		EXAMPLE	E 11-8
Radial Force @A	$F_D := F_{eA} = 4650.$	14 N		`
Catalogue Rating Load	$C_{10} := a_f \cdot F_D \cdot \left(- \right)$	x_D $\frac{1}{a}$	=11477.88 N	
		$+\theta_1 \cdot (1-R_D)$		
	$C_{10} = 11.48 \text{ kN}$			
Use Fig. 11.15 (P.586) to pick at 15.400 62.000 19.050 12100 7280 1.0000 2.4409 0.7500 2730 1640	1.67 -5.8 15100 1524		31.5 1.3 14.288 1.24 0.05 0.5625	55.0 58.0 2.17 2.28
From Fig. 11–15, tentatively se = 12100 N.	elect type TS 15100 cone	and 15245 cup, wh	nich will work: KA =1	l.67, <i>C</i> 10
Radial Force @B	$F_D = F_{eB} = 2653.$	87 N		
Catalogue Rating Load	$C_{10} \coloneqq a_f \cdot F_D \cdot \left(\begin{array}{c} \\ x_0 \end{array} \right)$	$\left. \begin{array}{c} x_D \\ \hline + heta_1 \cdot \left(1 - R_D \right)^{rac{1}{b}} \end{array} \right)^{rac{1}{a}}$	=6550.5 N	
Tentatively select the bearing i	dentical to bearing A			

58.0 2.28

Induced Thrust Load $F_{iA}\coloneqq 1.67 \qquad K_{B}\coloneqq 1.67$ Induced Thrust Load $F_{iA}\coloneqq \frac{0.47\cdot F_{rA}}{K_{A}}=610.59\ N$ $F_{iB}\coloneqq \frac{0.47\cdot F_{rB}}{K_{B}}=746.9\ N$ $F_{iB}+F_{ae}=2436.9\ N$ FiA < (FiB+Fae) $F_{eA}\coloneqq 0.4\cdot F_{rA}+K_{A}\cdot \left(F_{iB}+F_{ae}\right)=4937.44\ N$ $F_{eB}\coloneqq F_{rB}=2653.87\ N$ Application Factor $a_{f}\coloneqq 1.0$



Although this catalog entry exceeds slightly the tentative selection for bearing A, we will keep it since the reliability of bearing B exceeds 0.995.

Radial Force @B
$$F_D \coloneqq F_{eB} = 2653.87 \ N$$

Catalogue Rating Load
$$C_{10}\!\coloneqq\!a_f\!\cdot\!F_D\!\cdot\!\left(\!\frac{x_D}{x_0\!+\!\theta_1\!\cdot\!\left(1\!-\!R_D\!\right)^{\frac{1}{b}}}\!\right)^{\!\frac{1}{a}}\!=\!6550.5\,\textit{N}$$

Select cone and cup 15100 and 15245, respectively, for both bearing A and B.

In Ex. 11-8 bearings A and B (cone 15100 and cup 15245) have C_{10} = 12100 N. What is the reliability of the pair of bearings A and B?

Solution:

Desired life
$$x_D = \frac{L_D}{L_R} = \frac{60 \ L_D n_D}{90 \ 6} = \frac{60.5000 \cdot 80}{90 \cdot 10^6} = 2.67$$

For bearing A, $F_D = F_{eA} = 4938$ N, and $a_f = 1$:

$$R_{DA} = 1 - \left[\frac{x_D}{\theta} \left(\frac{a_f F_D}{C_{10}}\right)^a\right]^b = 1 - \left[\frac{2.67}{4.48} \left(\frac{1.493}{12100}\right)^{\frac{10}{3}}\right]^{1.5} = 0.99479$$

For bearing B, $F_D = F_{eB} = 2654$ N, and $a_f = 1$:

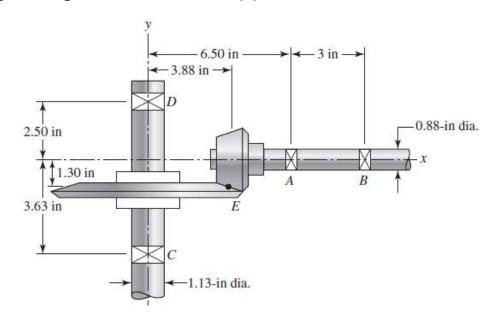
$$R_{DB} = 1 - \left[\frac{x_D}{\theta} \left(\frac{a_f F_D}{C_{10}} \right)^a \right]^b = 1 - \left[\frac{2.67}{4.48} \left(\frac{1 \cdot 2654}{12100} \right)^{\frac{10}{3}} \right]^{1.5} = 0.99977$$

Reliability of the bearing pair is

$$R = R_{DA}R_{DB} = 0.99479 \cdot 0.99977 = 0.99456$$

For the shaft AB, perform a preliminary specification for tapered roller bearings at A and B. A bearing life of 500 million revolutions is desired with a 90 percent combined reliability for the bearing set, assuming distribution data from manufacturer 1 in Table 11–6.

Should the bearings be oriented with direct mounting or indirect mounting for the axial thrust to be carried by the bearing at A?


Assuming bearings are available with K=1.5, find the required radial rating for each bearing. For this preliminary design, assume an application factor of one.

Given:

 $F_{rA} = 1643 \text{ lbf}$

 F_{rB} =758 lbf

 $F_{ae} = 92.8 \text{ lbf}$

EXAMPLE 11-42 (Cont'd)

$$F_{iA} = \frac{0.47F_{rA}}{K_A} = \frac{0.47 \cdot 1643}{1.5} = 515 \ lbf$$

$$F_{iB} = \frac{0.47F_{rB}}{K_B} = \frac{0.47 \cdot 758}{1.5} = 238 \ lbf$$

f 3.63 in $F_{iB} = 238 \text{ } lbf$ $F_{iB} = 238 \text{ } lbf$

3.88 in ->

Direct Mounting: $F_{iA} < F_{iB} - F_{ae}$

$$F_{iA} + F_{ae} = 515 + 93 = 608 \, lbf$$
 $F_{iB} = 238 \, lbf^{-1}$

Bearing B carries the axial thrust.

$$F_{eA} = F_{rA} = 1643 \ lbf$$

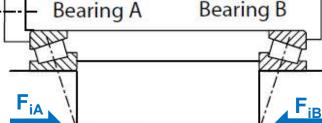
 $F_{eB} = 0.4F_{rB} + K(F_{iA} + F_{ae}) = 0.4 \cdot 758 + 1.5 \cdot 608 = 1215 \ lbf$

Indirect Mounting:

$$F_{iA} = 515 \ lbf$$
 $F_{iB} + F_{ae} = 238 + 93 = 331 \ lbf$

 $F_{iA} > F_{iB} + F_{ae}$ Bearing B carries the axial thrust.

$$F_{eA} = F_{rA} = 1643 \ lbf$$


$$F_{eB} = 0.4F_{rB} + K(F_{iA} - F_{ae}) = 0.4 \cdot 758 + 1.5 \cdot (515 - 93) = 936 \ lbf$$

Will select indirect mounting since it results in lower F_{eB}.

0.88-in dia.

Tapered Roller Bearing Equivalent Load Calculation

Direct Mounting

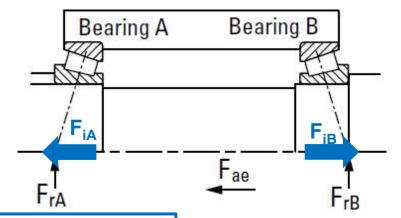
 F_{ae}

If
$$F_{iA} \leq (F_{iB} + F_{ae})$$

$$F_{iB} = \frac{0.47 r_B}{K_B}$$

$$F_{iA} = \frac{0.47F_{rB}}{K_B} + F_{ae} = F_{iB} + F_{ae}$$

$$F_{eA} = 0.4F_{rA} + K_A F_{iA} \qquad F_{eB} = F_{rB}$$


If
$$F_{iA} > (F_{iB} + F_{ae})$$

$$F_{iA} = \frac{0.47 r_A}{K_A}$$

$$F_{iB} = \frac{0.47F_{rA}}{K_A} - F_{ae} = F_{iA} - F_{ae}$$

$$F_{eA} = F_{rA} \qquad F_{eB} = 0.4F_{rB} + K_B F_{iB}$$

Indirect Mounting

If
$$F_{iA} \leq (F_{iB} - F_{ae})$$

$$F_{iB} = \frac{0.47F_{rB}}{K_B}$$

$$F_{iA} = \frac{0.47F_{rB}}{K_B} - F_{ae} = F_{iB} - F_{ae}$$

$$F_{eA} = 0.4F_{rA} + K_A F_{iA} \qquad F_{eB} = F_{rB}$$

If
$$F_{iA} > (F_{iB} - F_{ae})$$

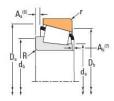
$$F_{iA} = \frac{0.47F_{rA}}{K_A}$$

$$F_{iB} = \frac{0.47 r_A}{K_A} + F_{ae} = F_{iA} + F_{ae}$$

$$F_{eA} = F_{rA} \qquad F_{eB} = 0.4F_{rB} + K_B F_{iB}$$

* If calculated equivalent load is less than radial load, then use radial load instead. TechRef: TIMKEN ENGINEERING MANUAL, p.43

Tapered Roller Bering Frictional Torque Calculation



Running Torque

Assume the bearing running torque has stabilized after an initial period referred to as running-in.

$Trq = k_1 G_1(n\mu)^{0.62} \left(\frac{f_3 F_r}{K}\right)^{0.3}$	
$n_{min} = \frac{k_2}{\mu G_2} \left(\frac{f_2 F_r}{K}\right)^{2/3}$	

n = shaft speed (rpm)

 $k_1 = 2.56x10^{-6}$ (N-m); or

 $k_1 = 3.54 \times 10^{-5} \text{ (in-lbf)}$

 $k_2 = 625$ (metric) or 1700 (inch)

 μ = lubricant dynamic viscosity at operating temperature (centipoise)

 f_3 = combined load factor

 f_2 = combined load factor

				Bea	ring Dime	nsions					0.0		*2009000000	
				Shaft		H	ousing				960	metry f	actors	Bearin
Width B	Width C	Eff. Ctr.	Max Shaft Fillet Radius R(5)		king ler Dia. ds	Max Housing Fillet Radius		king der Dia. Ds	Ca A _a (6)	ge Α _h (7)	G ₁	G ₂	Cg	Weigh
mm	mm	mm	mm	mm	mm	nm	mm	mm du	mm	mm				kg
in.	in.	in.	in.	in.	in.	in	in.	in.	in.	in.				lbs.
10.785 0.4246	7.938 0.3125	-3.0 -0.12	0.5 0.02	12.5 0.49	13.0 0.51	1.3 0.05	29.0 1.14	26.0 1.02	- 0.3 -0.01	1.5 0.06	1.7	3.2	0.0308	0.05 0.10
10.785 0.4246	7.938 0.3125	-3.0 -0.12	1.3 0.05	13.5 0.53	15.0 0.59	1.3 0.05	29.0 1.14	26.0 1.02	- 0.3 -0.01	1.5 0.06	1.7	3.2	0.0308	0.05 0.10
10.988 0.4326	8.730 0.3437	-2.5 -0.10	1.3 0.05	15.5 0.61	17.5 0.69	1.3 0.05	32.0 1.26	29.0 1.14	0.1 0.00	1.2 0.05	2.3	4.1	0.0355	0.05 0.13
10.785 0.4246	7.938 0.3125	-3.0 -0.12	0.8 0.03	15.5 0.61	16.5 0.65	1.3 0.05	29.0 1.14	26.0 1.02	- 0.3 -0.01	1.5 0.06	1.7	3.2	0.0308	0.04
10.988 0.4326	8.730 0.3437	-2.5 -0.10	0.8 0.03	17.5 0.69	17.5 0.69	1.3 0.05	32.0 1.26	29.0 1.14	0.1 0.00	1.2 0.05	2.3	4.1	0.0355	0.05 0.12
10.988 0.4326	8.730 0.3437	-2.5 -0.10	1.3 0.05	17.0 0.67	18.5 0.73	1.3 0.05	32.0 1.26	29.0 1.14	0.1 0.00	1.2 0.05	2.3	4.1	0.0355	0.05 0.12
14.072 0.5540	11.112 0.4375	-5.1 -0.20	1.5 0.06	16.5 0.65	19.0 0.75	0.8 0.03	34.0 1.34	33.0 1.30	-0.4 -0.02	1.3 0.06	3.1	2.9	0.0329	0.08 0.18
10.988 0.4326	8.730 0.3437	-2.5 -0.10	0.8 0.03	19.0 0.75	19.5 0.77	1.3 0.05	32.0 1.26	29.0 1.14	0.1 0.00	1.2 0.05	2.3	4.1	0.0355	0.04 0.11
10.998 0.4330	8.712 0.3430	- 3.3 -0.13	1.3 0.05	19.5 0.77	21.5 0.85	1.3 0.05	32.5 1.28	29.0 1.14	- 0.3 -0.02	1.4 0.06	3.0	5.4	0.0348	0.06 0.11
11.153 0.4391	9.525 0.3750	-1.5 -0.06	1.3 0.05	20.5 0.81	22.0 0.87	1.3 0.05	37.0 1.46	34.0 1.34	0.5 0.02	1.6 0.07	2.9	5.6	0.0404	0.08 0.16
14.681 0.5780	11.112 0.4375	-5.1 -0.20	1.3 0.05	20.0 0.79	21.5 0.85	2.0 0.08	37.5 1.48	34.0 1.34	0,3 0.01	1.4 0.06	4.2	4.0	0.0384	0.09
14.288 0.5625	9.525 0.3750	-1.3 -0.05	1.5 0.06	22.5 0.89	24.5 0.96	1.5 0.06	39.5 1.56	34.5 1.36	1.5 0.05	0.7 0.03	3.4	4.6	0.0465	0.10 0.22
16.670 0.6563	13.495 0.5313	-5.8 -0.23	1.5 0.06	21.0 0.83	23.0 0.91	1.5 0.06	39.0 1.54	36.5 1.44	0.4 0.01	1.9 0.08	5.3	4.5	0.0423	0.12 0.27
14.381 0.5662	11.112 0.4375	-4.1 -0.16	1.5 0.06	21.0 0.83	23.5 0.93	1.3 0.05	42.5 1.67	40.5 1.59	0.2 0.00	1.3 0.05	5.8	5.5	0.0448	0.14 0.29
21.539 0.8480	14.288 0.5625	-9.1 -0.36	0.8 0.03	21.5 0.85	22.0 0.87	1.3 0.05	44.5 1.75	42.0 1.65	2.2 0.09	0.7 0.03	8.0	4.0	0.0452	0.19 0.44
21.539 0.8480	17.462 0.6875	-9.1 -0.36	0.8 0.03	21.5 0.85	22.0 0.87	3.5 0.14	44.5 1.75	39.0 1.54	2.2 0.09	0.7 0.03	8.0	4.0	0.0452	0.21 0.47
21.839 0.8598	15.875 0.6250	- 5.8 -0.23	0.8 0.03	26.4 1.03	29.0 1.14	2.3 0.09	50.0 1.97	43.0 1.69	1.3 0.05	2.0 0.08	7.0	4.1	0.0558	0.25 0.57

TechRef: TIMKEN Tapered Roller Bearing Catalogue, p.51

Running Torque

Assume the bearing running torque has stabilized after an initial period referred to ²⁸ as running-in.

$$Trq = k_1 G_1 (n\mu)^{0.62} \left(\frac{f_3 F_r}{K}\right)^{0.3}$$

$$n_{min} = \frac{k_2}{\mu G_2} \left(\frac{f_2 F_r}{K}\right)^{2/3}$$

n = shaft speed (rpm)

 $k_1 = 2.56 \times 10^{-6} \text{ (N-m)}$; or

 $k_1 = 3.54 \times 10^{-5}$ (in-lbf)

 $k_2 = 625$ (metric) or 1700 (inch)

 μ = lubricant dynamic viscosity at operating temperature (centipoise)

 f_3 = combined load factor

 f_2 = combined load factor

The torque equations will be underestimated if n is less than n_{min} .

Load Condition f3 and f2 $KF_a/F_r > 2.0$ f3 = KFa/Fr $f_2 = f_3 + 0.8$ $0.47 \le KF_a/F_r \le 2.0$ Use graph above $f_3 = 0.06$ $KF_a/F_r < 0.47$ $f_3 = 1.78$ 2.6 2.4 2.2 2.0 Combined load factors, f₁ and f₂ 1.8 1.0 0.8 0.6 0.4 0.2 0.2 1.0 1.4 KFa/Fr

Sichuan University - Pittsburgh Institute

Example

Calculate the running torque of a Timken TS 05075X tapered roller bearing with shaft speed of 4000rpm and lubricated with SAE 30 oil operated at 65°C.

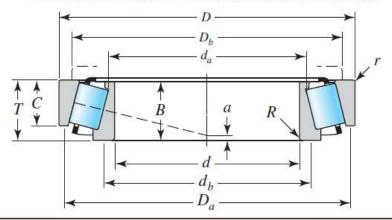
$$F_r$$
=3000 N, F_a =1500 N
K=1.64, $\frac{KF_a}{F_r}$ = 0.82

f₃=0.6 (from chart)

Viscosity @65°C=25cP

Bea	ring Dimensi	ions			Part Number						
Bore O.D				Load Ratings							
	0.D. D	Width T	Dynamic ⁽¹⁾ C ₁	Fact e	ors ⁽²⁾ Y	Dyna C ₉₀	mic ⁽³⁾ C _{a90}	Factors ⁽²⁾	Static C ₀	Inner	Outer
mm in.	mm in.	mm in.	N lbf			N lbf	N lbf		N Ibf		
1 9.050 0.7500	47.000 1.8504	14.381 0.5662	26700 6010	0.36	1.68	6930 1560	4230 952	1.64	25400 5720	05075X	05185-S

	Bearing Dimensions												antore	
Width B				Shaft		Housing					Geometry Factors			Bearing
	Width C	Eff. Ctr.	Max Shaft Fillet Radius R ⁽⁵⁾		king Ier Dia. d _b	Max Housing Fillet Radius r ⁽⁵⁾		king der Dia. D _b	Ca A _a ⁽⁶⁾	ge A _b ⁽⁷⁾	G ₁	G ₂	Cg	Weight
mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.	mm in.				kg lbs.
21.000 0.8268	16.000 0.6299	-6.1 -0.24	1.0 0.04	23.0 0.90	27.5 1.08	2.0 0.08	43.0 1.69	37.5 1.48	1.4 0.05	1.4 0.06	6.1	4.6	0.0526	0.20 0.42


Torque =
$$k_1 G_1(n\mu)^{0.62} \left(\frac{f_3 F_r}{K}\right)^{0.3}$$

= $2.56 \cdot 10^{-6} \cdot 6.1 \cdot (4000 \cdot 25)^{0.62} \left(\frac{0.6 \cdot 3000}{1.64}\right)^{0.3} = 0.161 N \cdot m$

Selection of Tapered Roller Bearing

4	outside	525	500 m	ng at pm for ours L 10	fac-	eff.	part nu	imbers	max shaft fillet	+44	shot	cing ilder	max hous-		sho	cking ulder
bore	diameter	width	one- row radial	thrust	tor	load center	cone	cup	fillet radius	width	diam	eters	fillet radius	width	diar	neters
d	D	Т	N Ibf	N Ibf	K	a ^②			R®	В	d_{b}	d _a	r®	C	D _b	D _a
25.400 1.0000	66.421 2.6150	23.812 0.9375	18400 4140	8000 1800	2.30	- 9.4 -0.37	2687	2631	1.3 0.05	25.433 1.0013	33.5 1.32	31.5 1.24	1.3 0.05	19.050 0.7500	58.0 2.28	60.0 2.36
25.400 1.0000	68.262 2.6875	22,225 0.8750	15300 3440	10900 2450	1.40	-5.1 -0.20	02473	02420	0.8 0.03	22.225 0.8750	34.5 1.36	33.5 1.32	1.5 0.06	17.462 0.6875	59.0 2.32	63.0 2.48
25.400 1.0000	72.233 2.8438	25.400 1.0000	18400 4140	17200 3870	1.07	- 4.6 -0.18	HM88630	HM88610	0.8 0.03	25.400 1.0000	39.5 1.56	39.5 1.56	2.3 0.09	19.842 0.7812	60.0 2.36	69.6 2.72
25,400 1.0000	72.626 2.8593	30.162 1.1875	22700 5110	13000 2910	1.76	- 10.2 -0.40	3189	3120	0.8 0.03	29.997 1.1810	35.5 1.40	35,0 1.38	3.3 0.13	23.812 0.9375	61.0 2.40	67. 0 2.64
26.157 1.0298	62.000 2.4409	19.050 0.7500	12100 2730	7280 1640	1.67	- 5.8 -0.23	15103	15245	0.8 0.03	20.638 0.8125	33.0 1.30	32.5 1.28	1.3 0.05	14.288 0.5625	55.0 2.17	58.0 2.28
26.162 1.0300	63.100 2.4843	23.812 0.9375	18400 4140	8000 1800	2.30	- 9.4 -0.37	2682	2630	1.5 0.06	25.433 1.0013	34.5 1.36	32.0 1.26	0.8	19.050 0.7500	57.0 2.24	59.0 2.32
26.162 1.0300	66.421 2.6150	23.812 0.9375	18400 4140	8000 1800	2.30	- 0.4	2682 CINI	GLE-R	OW	25.433 C/T/D	A I C	32.6	13	10.050	58.0 2.28	60. 6

Sichuan University - Pittsburgh Institute

