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Technical Topics

 Thick-Walled Cylinders (Sec. 3-14)

– Thick-Walled vs. Thin-Walled

– Characteristics under Thick-Walled

 Characteristic Stresses of Thick-Walled Cylinders (Sec. 3-14)

 Generalization to Press Fits or Interference Fits (Sec. 3-16, 3-17)

 Limits and Fits (Sec. 7-8)

 Technical References:

– R.G. Budynas, Advanced Strength and Applied Stress Analysis, 
McGraw-Hill Book Company.

– Preferred Limits and Fits for Cylindrical Parts, ANSI B4.1-1967

– Preferred Metric Limits and Fits, ANSI B4.2-1978
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Press Fits or Interference Fits

 In a press/interference fit, the shaft is compressed and the hub (OD 
Cylinder) is expanded.

 Typical press/interference fits: Press Fit & Shrink Fit 

 Press fits, or interference fits, are similar in the way to pressurized 
cylinders: 

– placement of an oversized shaft in an undersized hub results in 
a radial pressure at the interface

 Design Interest: Calculate radial pressure at the interface

Press Fit Shrink Fit
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Characteristic Stresses of Thick-Walled Cylinders

Characteristic stresses on a thick-walled cylinder are

 Circumferential (hoop) stress σq,

 Radial stress σr, and

 Longitudinal (axial) stress σz

Assuming cylinder geometry is symmetric along axial axis Z,

 Shear stress trq will not develop; trq =0

 σq constant along circumferential direction; σq is f(r) but not f(q)
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Characteristics of Press Fits

 The shaft is compressed and the hub is expanded.

 Pressures at the mating surfaces (P) are equal and opposite.

 The relative amount of compression and expansion depends on the 
stiffness (elasticity and geometry) of the two pieces.

 Sum of shaft compression and hub expansion equals the 
interference introduced.

 Assume both members have the same length

C
bo bi

a Radial Interference   
𝛿 = 𝑏௜ − 𝑏௢

Hub: Outer Cylinder Shaft: Inner Cylinder
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Contact Pressure at Press Fit Interface

 Contact pressure (P) serves as outer surface pressure for the shaft 
(inner cylinder) and inner surface pressure for the hub (outer cylinder). 

 Assume shaft and hub are of different materials.

 Since bo and bi are almost equal, let bo ≈ bi ≈ R

 Contact pressure P:

𝑃 =
𝛿

𝑅
1

𝐸௢

𝑐ଶ + 𝑅ଶ

𝑐ଶ − 𝑅ଶ + 𝜈௢ +
1
𝐸௜

𝑅ଶ + 𝑎ଶ

𝑅ଶ − 𝑎ଶ − 𝜈௜

d = radial interference, ௜ ௢

R: approximate radius at interface
c: hub outer radius 
a: shaft inner radius
Eo , Ei Modulus of elasticity of outer & inner parts respectively
no , ni Poisson’s ratio of elasticity of outer & inner parts respectively

c
R

a

Eo,no

Ei,ni
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Contact Pressure at Press Fit Interface

 Common Case: inner cylinder and outer cylinder are made of the 
same material ( ௢ ௜ ௢ ௜ )

 Contact pressure P:

ଷ

ଶ ଶ ଶ ଶ

ଶ ଶ

d = radial interference, ௜ ௢

R: approximate radius at interface
c: hub outer radius 
a: shaft inner radius
Eo , Ei Modulus of elasticity of outer & inner parts respectively
no , ni Poisson’s ratio of elasticity of outer & inner parts respectively
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Stresses at Press Fit Interface

 Radial Stress ௥

 Hoop Stress ఏ

𝜎௥ ௕೔
= 𝜎௥ ௕೚

= −𝑃

𝜎ఏ ௕೔
= −𝑃

𝑅ଶ + 𝑎ଶ

𝑅ଶ − 𝑎ଶ
𝜎ఏ ௕೚

= 𝑃
𝑐ଶ + 𝑅ଶ

𝑐ଶ − 𝑅ଶ

Note that:
• Radial stress is compressive on both hub and shaft
• Hoop stress is tensile on hub ID and compressive on shaft OD
• Absolute magnitude of radial stress is less than hoop stress

Question: Which stress component on which part is the limiting factor 
in terms of press-fit design?
Hoop stress on hub ID surface is the limiting factor.
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Missing from Calculated Contact Pressure

 Assumed both members have the same length.

 In the case of a hub that has been press-fitted onto a shaft, this 
assumption would not be true, and there would be an increased 
pressure at each end of the hub. 

 Stress concentration factor (K) depends upon the contact pressure 
and the design of the female member, but its theoretical value is 
seldom greater than 2.

Hub 

Shaft 
PPE

𝑆𝑡𝑟𝑒𝑠𝑠 𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛  𝐾 =
𝑃ா

𝑃 Hub 

Shaft 

Stress
Concentration
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Torque Transmission by Press Fit

Required force in order to press part thru

௠௔௫

: Coefficient of Friction

Limiting capacity for torque resistance
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Shrink Fits
If heating or cooling a part is used to achieve a shrink fit, the required 
radial interference is: 

 

 b: approximate radius at interface 

 a: Coefficient of Thermal Expansion 

 : Applied Temperature Change

Table 3–3 Coefficients of Thermal Expansion
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Barring material selections, primary consideration in press 
fit design is the decision of interference, which not only 
depends on nominal dimensions, but also their 
tolerances, of the mating parts.
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7-8 Limits and Fits

Figure 7-20

Preferred Limits and Fits for Cylindrical Parts, ANSI B4.1-1967. Preferred Metric Limits and Fits, ANSI B4.2-1978.

Table 7-20

• Also Tables A-11 to A-14
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7-8 Limits and Fits

Capital letters always refer to the hole; 
lowercase letters are used for the shaft.

Table 7-20
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7-8 Limits and Fits
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Example 7-7 Clearance Fit

Find shaft and hole dimensions for a loose running fit with a 34-mm 
basic size

Design per H11/c11 spec 

(Capital letter: Hole; Lowercase letter: Shaft)
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Example 7-7 Clearance Fit

Find shaft and hole dimensions for a loose running fit with a 34-mm
basic size

Per A-11, tolerance grade of H11 DD=0.160mm 
tolerance grade of c11 Dd=0.160mm 
Hole diameter: Dmax=D+DD=34+0.160=34.160mm; Dmin=D=34mm

International Tolerance (IT)
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Example 7-7 Clearance Fit

Find shaft and hole dimensions for a loose running fit with a 34-mm
basic size Fundamental Deviations for Shafts

Dd=0.160mm 

For shaft with c11, 
dF =-0.120mm 

Max shaft dia: 
dmax=D+dF

=34+(-0.120) 
=33.880mm 

Min shaft dia: 
dmin=D+ dF –Dd
=34+(-0.120)-Dd
=33.720mm

Diametral Clearance: 
dmax=Dmax-dmin=34.160-33.720=0.440mm=DD- dF

dmin=Dmin-dmax=34.000-33.880=0.120mm=- dF
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Example 7-7 Clearance Fit

Find shaft and hole dimensions for a loose running fit with a 34-mm
basic size (ANSI B4.2-1978 for detailed H11/c11 fit dimensions)
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Example 7-8 Interference Fit

Find the hole and shaft limits for a medium drive fit using a basic hole

size of 2 in. Table A-13 International Tolerance (IT)

Tolerance grade H7 DD=0.0010”
Tolerance grade s6 Dd=0.0006” 

Hole Diameter:
Dmax=D+DD=2+0.0010=2.0010” 
Dmin=D=2.0000”
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Example 7-8 Interference Fit

For shaft with s6, dF =0.0017” 

Min shaft OD=dmin=D+ dF =2+0.0017=2.0017” 

Max shaft OD= dmax=D+ dF +Dd=2+0.0017+0.0006=2.0023”

Diametral interference
dmax=dmax-Dmin

2.0023-2.000
=0.0023”
=dF +Dd

Min interference
dmin=2.0017-2.0010
=0.0007”
=dF -DD
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Press-Fit & Interference-Fit  Design Workflow

𝛿௠௔௫ = 𝛿ி + Δ𝑑
𝛿௠௜௡ = 𝛿ி − Δ𝐷

𝛿௠௔௫ = Δ𝐷 − 𝛿ி

𝛿௠௜௡ = −𝛿ி
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7-8 Limits and Fits

Force fit grade is commonly used for 
driveshaft torque transmission.
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Design Discipline

Every design we do in this class, we will follow this discipline…..

Given
Design

Scenario

Sizing
Parts

Theorize 
Failure

Mechanisms

Calculate
Critical

Force/Stress

Establish
Pass/Failure

Criteria

Assess
Failure Risk

Pass
?

No

Design
Review

Yes

1. Design 2. Analysis 3. Assessment 4. Judgement
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Application Notes:
Thick-Walled Cylinder and Its Stress Distribution
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Characteristic Stresses of Thick-Walled Cylinders

Characteristic stresses on a thick-walled cylinder are

 Circumferential (hoop) stress σq,

 Radial stress σr, and

 Longitudinal (axial) stress σz

Assuming cylinder geometry is symmetric along axial axis Z,

 Shear stress trq will not develop; trq =0

 σq constant along circumferential direction; σq is f(r) but not f(q)
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Stress Distributions on Thick-Walled Cylinders
with Internal (pi) and External Pressures (po)
Per force equilibrium on elemental basis, generalized stress 
distributions on a thick-wall cylinder are:

Assumptions imposed to derive the above equations:

 Cylinder symmetric along Z (sq=f(r) only, trq =0)

 Cylinder free of constraints on two ends; σz=0

 Cylinder rotation negligible; w~0

௥
௜ ௜

ଶ
௢ ௢

ଶ
௢ ௜

ଶ
௢ ௜

௢
ଶ

௜
ଶ

ఏ
௜ ௜

ଶ
௢ ௢

ଶ
௢ ௜

ଶ
௢ ௜

௢
ଶ

௜
ଶ
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Thick-Walled Cylinder

Thick-Walled vs. Thin-Walled

 Thick-Walled cylinder: wall thickness (t) greater 
than 10 percent of the average radius.

 Average Radius: ௔
௥೔ା௥೚

ଶ ௢ ௜

 For thick-walled cylinder: 
௥ೌ

ଵ଴

, which implies ௢ ௜

Generally ௢ ௜ at least

 ASME BPVC suggests ௢ ௜ to qualify for 
thick-walled cylinder.

 Could be pressurized internally and/or externally
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Effects of Cylinder OD Pressure on Radial Stress

 If OD surface is unpressurized (po = 0), the radial stress at OD is

 If OD surface is pressurized (po ≠ 0), the radial stress at OD is

௥
௜ ௜

ଶ
௢ ௢

ଶ
௢ ௜

ଶ
௢ ௜

௢
ଶ

௜
ଶ

௥ ௥ୀ௥௢

௥ ௥ୀ௥ ௢ “-” indicates it is in compression
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Internal Pressure Only

External Pressure Only
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Longitudinal Stress

 Generally only considered for the case of internal pressurization (po

= 0)

 Longitudinal stress is simply given by a Force/Area, where

– Force 

– Area = annular area of the cylinder cross section

ri

r

pi

ro

௜ ௜
ଶ

௢
ଶ

௜
ଶ

௭
௜ ௜

ଶ

௢
ଶ

௜
ଶ

An approximation of the average stress on
end faces, not true stress distribution.
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Example: Internal Pressure Only (pi≠0, po=0)

Determine the stress distribution in a cylinder with inner diameter of 2” 
and outer diameter of 6” with pi=5000 psi and po=0 psi

Radial Stress
 On ID surface, r= -5000 psi = -pi

 On OD surface, r= 0 psi = po

Hoop Stress
 Maximum at the inner surface, 6250 psi
 Lower, but not zero, at the unpressurized outer surface, 1250 psi.
 Magnitude of hoop stress is greater than radial stress
Longitudinal Stress

Longitudinal Stress z = 625 psi, considered as a uniform, average
stress across the thickness of the wall.

𝜎௥ =
5000 ∗ 1ଶ + [

(3 ∗ 1)
𝑟

]ଶ 0 − 5000

3ଶ − 1ଶ
= 625 −

5625

𝑟ଶ

𝜎ఏ =
5000 ∗ 1ଶ − [

(3 ∗ 1)
𝑟

]ଶ 0 − 5000

3ଶ − 1ଶ
= 625 +

5625

𝑟ଶ
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Example: External Pressure Only (pi=0, po≠ 0)

 Determine the stress distribution in a cylinder with inner diameter of 
2” and outer diameter of 6” with pi = 0 psi and po = 5000 psi

Radial Stress
• On ID surface, 𝜎௥= 0 psi = pi

• On OD surface, 𝜎௥= -5000 psi = -po

Hoop Stress
• Maximum at the outer surface, -6250 psi
• Minimum at the unpressurized inner surface, -11250 psi.
• Absolute magnitude of hoop stress is greater than radial stress

Longitudinal Stress is not usually considered for external pressure.

𝜎௥ =
−5000 ∗ 3ଶ + [

(3 ∗ 1)
𝑟

]ଶ 5000 − 0

3ଶ − 1ଶ
= −5625 +

45000

𝑟ଶ

𝜎ఏ =
−5000 ∗ 3ଶ − [

(3 ∗ 1)
𝑟

]ଶ 5000 − 0

3ଶ − 1ଶ
= −5625 −

45000

𝑟ଶ


