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Lecture 9

Failure (Static loading – brittle material)



Objectives

 Apply static failure theories in engineering 
design involving brittle materials

 Explain the concepts of stress intensity 
factor and fracture toughness in fracture 
mechanics

 Apply stress intensity factors and fracture 
toughness in the engineering design analysis



Brittle failure

▪ Brittle Materials have percent elongation < 5%

▪ Brittle failure gives no warning

▪ Stress concentration must be included for brittle materials

▪ Brittle material failures are based on criteria such as

❖ Maximum normal stress (MNS),

❖ Brittle Coulomb-Mohr (BCM),

❖ Modified Mohr (MM)



Maximum normal stress theory

▪ The maximum-normal-stress theory states that failure occurs whenever one of 

the three principal stresses equals or exceeds the ultimate strength

▪ For a general stress state with principal stresses in the ordered form σ1  σ2  σ3. 

this theory predicts that failure occurs whenever 

1 ≥ 𝑆𝑢𝑡 or 3− 𝑆𝑢𝑐

▪ Sut and Suc are the ultimate tensile and 

compressive strengths, respectively, 

given as positive quantities

▪ Maximum-normal-stress theory theory 

is not very good at predicting failure in 

the fourth quadrant of the A, B plane. 

Hence not recommended for use (has 

been added for historical reason!)



Maximum normal stress theory

▪ Failure occurs when the maximum principal stress in a stress element 

exceeds the ultimate strength

▪ Predicts failure when

1 ≥ 𝑆𝑢𝑡 or   3− 𝑆𝑢𝑐
▪ For plane stress:

𝐴 ≥ 𝑆𝑢𝑡 or   𝐵− 𝑆𝑢𝑐

▪ Incorporating design factor:

𝐴 =
𝑆𝑢𝑡

𝑛
or   𝐵 = −

𝑆𝑢𝑐

𝑛

▪ Do not use maximum normal stress theory for ductile materials as it 

does not fit experimental data



Brittle Coulomb-Mohr theory
▪ Same as Coulomb-Mohr (for ductile materials), except the brittle 

materials properties are the ultimate tensile and compressive strengths 

(remember: use yield tensile & compressive strengths only for ductile 

materials) 

▪ Failure equations dependent on quadrant



Modified Mohr theory

▪ Coulomb-Mohr is conservative in 4th quadrant

▪ Modified Mohr criteria adjusts to better fit the data in the 4th quadrant



Example 1

A cast pipe of outer diameter D = 100mm and inner diameter d = 60mm is made 

of an aluminum alloy having ultimate strengths in tension Sut = 200 MPa and 

compression Suc = 600 MPa. Determine the maximum torque that can be applied 

without causing rupture using maximum normal stress theory and a safety factor 

of n = 2. Reworked using Coulomb-Mohr and modified Mohr theories

The torque and the maximum shear stress in the pipe are related by the torsion 

formula:

𝑇 =
𝐽
𝑟
=
(0.054−0.34)

2(0.05)
= 170.9(10−6)

The principal stress is described by σ1 = −σ2 = τ, σ3 = 0

Failure occurs when the maximum principal stress in 

a stress element first exceeds 200MPa; 1 =
𝑆𝑢𝑡

𝑛
= 𝜏; 

Hence max torque 𝑇 = 170.9(10−6)
𝑆𝑢𝑡

𝑛
=17.09 kNm



Example 1

𝑇 = 170.9(10−6) and Sut = 200 MPa while Suc = 600 MPa

• Employing the Coulomb–Mohr Theory, the principal stresses are

σA  0  −σB where σA = τ, σB = - τ and n = 2

1

𝑛
=

𝐴

𝑆𝑢𝑡
−
𝐵

𝑆𝑢𝑐
=



𝑆𝑢𝑡
+



𝑆𝑢𝑐
= 

1

𝑆𝑢𝑡
+

1

𝑆𝑢𝑐

 = 75MPa

and 

𝑇 = 170.9 10−6  = 12.82kNm

Comparison indicated that on the basis of the maximum normal stress 

theory, the torque 17.09 kNm that can be applied to the pipe is about 25% 

larger than 12.82kNm obtained on the basis of the Coulomb–Mohr theory.



Example 1

𝑇 = 170.9(10−6) and Sut = 200 MPa while Suc = 600 MPa

• Employing the modified Mohr Theory, the principal stresses are

σA  0  −σB where σA = τ, σB = - τ and n = 2

Note that 
𝐵

𝐴
= 1; hence

𝐴 =
𝑆𝑢𝑡
𝑛

= 

 = 100MPa

and 

𝑇 = 170.9 10−6  = 17.09kNm



Selection of failure criteria

▪ First determine if material is ductile or brittle

▪ For ductile

❖ MSS is conservative, often used for design where higher reliability 

is desired

❖ DE is typical, often used for analysis where agreement with 

experimental data is desired

❖ If tensile and compressive strengths differ, use Ductile Coulomb-

Mohr

▪ For brittle

❖ Brittle Coulomb-Mohr is very conservative in 4th quadrant

❖ Mohr theory is best, but difficult to use. It is slightly conservative in 4th 

quadrant, but closer to typical



Selection of failure criteria



Fracture mechanics

❖ Cracks exist in parts before service begins – “every structure contains 

small flaws, inclusions, defects, etc. whose size and distribution are 

dependent upon the material and its processing”

❖ These cracks can grow during service

❖ The objective of fracture mechanics analysis is to determine if these small 

flaws will grow into large enough cracks to cause the component to fail 

catastrophically

❖ Linear elastic fracture mechanics (LEFM) is often used to analyse crack 

growth during service

❖ Ductile materials can often neglect crack growth due to the plastic 

deformation that occurs at the crack tip blunting the crack and preventing 

the crack growth to a certain extent

❖ Crack growth in brittle materials must always be analysed

❖ For brittle materials, time is needed to feed the crack energy from the 

stress field to propagate the crack (e.g. cracking of ice on a frozen pond)



Fracture mechanics

❖ Model of crack of length 2a

❖ Maximum stress at (±a, 0):

𝑎 = 1 + 2
𝑎

𝑏


❖ As b→ 0, a→

❖ Three distinct modes of crack propagation:

1) Mode I - Opening crack mode due to 

tensile stress field

2) Mode II - Sliding mode due to in-plane 

shear

3) Mode III – Tearing mode due to out-of-

plane shear

❖ Combination of modes possible



Stress intensity factor

❖ Model of a mode I crack of length 2a in the 

infinite plate

❖ Stress field equation at crack tip:

𝜎𝑥 = 
𝑎

2𝑟
cos

𝜃

2
1 − sin

𝜃

2
sin

3𝜃

2

𝜎𝑦 = 
𝑎

2𝑟
cos

𝜃

2
1 + sin

𝜃

2
sin

3𝜃

2

𝜏𝑥𝑦 = 
𝑎

2𝑟
sin

𝜃

2
cos

𝜃

2
cos

3𝜃

2

𝜎𝑧 = ቐ
0 (for plane stress)

𝜈(𝜎𝑥 + 𝜎𝑦) (for plane strain)

As  = 0, r→ 0, y→ (practically inappropriate)

❖ Stress concentration factor approach won’t work!

x

xy



Stress intensity factor
❖ Define stress intensity factor (for mode I):

𝐾𝐼 =  𝑎
❖ Rewrite Stress field equation at crack tip:

𝜎𝑥 =
𝐾𝐼

2𝑟
cos

𝜃

2
1 − sin

𝜃

2
sin

3𝜃

2

𝜎𝑦 =
𝐾𝐼

2𝑟
cos

𝜃

2
1 + sin

𝜃

2
sin

3𝜃

2

𝜏𝑥𝑦 =
𝐾𝐼

2𝑟
sin

𝜃

2
cos

𝜃

2
cos

3𝜃

2

𝜎𝑧 = ቐ
0 (for plane stress)

𝜈(𝜎𝑥 + 𝜎𝑦) (for plane strain)

❖ To overcome  = 0, r→ 0, y→ the stress intensity 

factor is a function of geometry, size and shape of the 

crack, and the type of loading

x

xy



Stress intensity factor

❖ For various load and geometric 

configurations, it is more 

convenient to express the stress 

intensity factor as 

𝐾𝐼 =  𝑎

where  is the stress intensity 

modification factor which is 

presented either as a Table, Chart, 

or equation (see Figs. 5.25-5.30)

❖ Note:  is stress at the absence 

of cracks



Stress intensity factor



Stress intensity factor



Fracture toughness
❖ When the magnitude of the mode I stress intensity factor reaches a 

critical value (i.e.  KIC), crack propagation initiates

❖ The critical stress intensity factor KIC is a material property called 

fracture toughness (Some KIC values given in Table 5-1)

❖ As long as the stress intensity factor 𝐾𝐼 stays below the critical fracture 

toughness KIC the crack is considered stable

❖ If 𝐾𝐼 reaches KIC, the crack will propagate and lead to sudden failure. 

Propagation rates can reach 1mile/sec

❖ For engineering design purpose:

If 𝐾𝐼  KIC then no fracture

If 𝐾𝐼  KIC then fracture

❖ Safety design criterion:

Factor of safety 𝑛 =
KIC

KI



Fracture toughness

❖ The fracture toughness is a material property and depends on many 

factors including material processing, crack mode, temperature, loading 

rate, and the state of stress at the crack site (Some KIC values given in 

Table 5-1)



Example 2

A steel ship deck plate is 30mm thick and 

12 m wide. It is loaded with a nominal 

uniaxial tensile stress of 50 MPa. It is 

operated below its ductile-to-brittle 

transition temperature with KIC equal to 

28.3MPa m. If a 65-mm-long central 

transverse crack is present, estimate the 

tensile stress at which catastrophic failure 

will occur. Compare this stress with the 

yield strength of 240MPa for this steel

Central transverse crack d = b, 2a = 65mm 

and 2b = 12m, so that d/b = 1; a/d = 0.00542;

From fig.   1



Example 2

Given 2a = 65mm and found   1; known KIC = 28.3MPa m; nominal 

uniaxial tensile stress  = 50MPa and yield strength Sy = 240MPa

❖ Stress intensity factor (for mode I):

𝐾𝐼 =  𝑎 = 16.0MPa m

❖ Factor of safety 𝑛 =
KIC

KI
= 1.77

❖ The stress at which catastrophic failure occurs is 𝑐 = 𝑛 = 88.5MPa

❖ The yield strength is 240 MPa, and catastrophic failure occurs at 

88.5

240
= 0.37 or at 37 percent of yield

❖ Note that with the crack, the factor of safety is NOT 
240

50
= 4.8

❖ The factor of safety in this circumstance is 1.77



Example 3

Estimate the length of a transverse crack in 2024 Aluminum that would result 

in catastrophic failure (assuming negligible stress intensity modification)

Known KIC = 26MPa and Sy = 455MPa; for n = 1, KIC = KI assuming =1

𝐾𝐼 = 𝐾𝐼𝐶 = 𝛽 𝑎 = 𝑆𝑦 𝑎

𝑎 =
1


𝐾𝐼𝐶

𝑆𝑦

2

= 0.001m

The cross section will yield before unstable fracture for any transverse crack 

less than 2mm in total length (assuming negligible stress intensity 

modification)


