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Lecture 8

Failure (Static loading – ductile material)



Objectives

 Explain the differences between the failure 
of ductile and brittle materials

 Apply static failure theories in engineering 
design involving ductile materials



Failure examples

Corrosion failure

Impact failure

Loading failure

Stress concentration failure

Shear failure

Fatigue failure



Failure by fracture
◼ Why do parts fail by fracture?

 The simple answer is that parts fail because the applied stresses exceeds 

the material’s strength

◼ But strength is an inherent property of a material under specific loading 

conditions and types of strength can include tensile strength, compressive 

strength, torsional strength etc.

◼ Then, what kind of stresses cause failure?

 Remember under any applied load, there is always a combination of 

normal and shearing stresses in the material

 Furthermore, strength is a scalar value and stress is a vector 

 =

𝑥 𝑥𝑦 𝑥𝑧
𝑦𝑥 𝑦 𝑦𝑧
𝑧𝑥 𝑧𝑦 𝑧

We must introduce failure theories that 

convert the stresses into  scalar equivalent 

for comparison to strength



Loading and fracture

▪ Ductility is the degree to which a material will deform before ultimate 

fracture

▪ Percent elongation is used as a measure of ductility

▪ Ductile Materials have percent elongation  5%

▪ Brittle Materials have percent elongation < 5%

▪ For machine members subject to repeated or shock or impact loads, 

materials with percent elongation > 12% are recommended



Ductile vs brittle fracture

1) Ductile fracture is generally “cup 

and cone” and is desirable!

2) Brittle failure gives no warning

Highly 

ductile

Moderate 

ductile

Brittle



Stress concentration & fracture

• Localized increase of stress occurs near discontinuities

• Kt is Theoretical (Geometric) Stress Concentration Factor

𝐾𝑡 =
𝑚𝑎𝑥

0
𝐾𝑡𝑠 =

𝑚𝑎𝑥

0



Stress concentration & fracture

With static loads and ductile materials

▪ Extensive plastic deformation ahead of 

crack restricts propagation unless 

applied stress is increased

▪ These are mainly localized at 

microscopic level

▪ Ductile materials can absorb energy 

before failure

▪ Overall part does not see damage unless 

ultimate strength is exceeded

❖ Stress concentration effect is commonly 

ignored on ductile materials for static 

loads (but must be included for 

dynamic loading)



Stress concentration & fracture

For brittle materials

▪ Very little plastic deformation and 

crack propagates rapidly without 

increased in applied stress

▪ Low energy absorption before failure

❖ Stress concentration must be included 

on brittle materials for static loads, 

since localized yielding may quickly 

result in catastrophic failure



Static failure theories

Failure theories are used to predict if failure would occur under any 

given state of stress

The generally accepted theories are:

1) Ductile materials (yield criteria)

❖ Maximum shear stress (MSS) – Tresca Criterion

❖ Distortion energy (DE) – von-Mises Criterion

❖ Ductile Coulomb-Mohr (DCM)

2) Brittle materials (fracture criteria)

• Maximum normal stress (MNS),

• Brittle Coulomb-Mohr (BCM),

• Modified Mohr (MM),



Maximum shear stress theory
▪ Theory: Yielding begins when the maximum shear stress in a stress 

element exceeds the maximum shear stress in a tension test specimen

▪ Let Sy be the material yield strength 

▪ At yielding, the maximum shear stress is Sy/2 

▪ The theory could be restated as: Yielding begins when the maximum 

shear stress in a stress element exceeds Sy/2

▪ For any stress element, find the maximum shear stress using Mohr’s 

circle and compare the maximum shear stress to Sy/2

Ordering the principal stresses such that 1 ≥ 2 ≥ 3,

𝑚𝑎𝑥 =
1−3

2
≥

𝑆𝑦

2
or 1 − 3 ≥ 𝑆𝑦 (yielding criteria)

Incorporating a design factor “n”:

𝑚𝑎𝑥 =
𝑆𝑦

2𝑛
or 1 − 3 =

𝑆𝑦

𝑛
(design criteria)

Or solving for factor of safety: 𝑛 =
Τ𝑆𝑦 2

𝑚𝑎𝑥
=

𝑆𝑦

1−3



Maximum shear stress theory

To simplify, consider a plane stress state (one of the principal stress is zero)

Let A and B represent the two non-zero principal stresses, then order them 

with the zero principal stress such that 1 ≥ 2 ≥ 3;

Assuming A ≥ B there are three cases to consider:

▪ Case 1: A ≥ B ≥ 0 (tensile stresses)

For this case, 1 = A and 3 = 0

1 − 3 ≥ 𝑆𝑦 reduces to A ≥ 𝑆𝑦 and 𝐴 =
𝑆𝑦

𝑛

▪ Case 2: A ≥ 0 ≥ B (tensile and compressive stresses)

For this case, 1 = A and 3 = B

1 − 3 ≥ 𝑆𝑦 reduces to 𝐴 − 𝐵 ≥ 𝑆𝑦 and 𝐴 − 𝐵 =
𝑆𝑦

𝑛

▪ Case 3: 0 ≥ A ≥ B (compressive stresses)

For this case, 1 = 0 and 3 = B

1−3 ≥ 𝑆𝑦 reduces to 𝐵 ≤ −𝑆𝑦 and 𝐵 = −
𝑆𝑦

𝑛



Maximum shear stress theory

▪ Plot three cases on principal stress axes

❖ Case 1: A ≥ B ≥ 0 (tensile stresses)

A ≥ 𝑆𝑦
❖ Case 2: A ≥ 0 ≥ B (tensile and compressive stresses)

𝐴 − 𝐵 ≥ 𝑆𝑦
❖ Case 3: 0 ≥ A ≥ B (compressive stresses)

𝐵 ≤ −𝑆𝑦
▪ Other lines are symmetric cases

▪ Inside envelope is predicted safe zone

▪ Commonly used for design situations

▪ Conservative in all quadrants

▪ Close match with experimental data



Distortion energy theory
❖ Also known as: Octahedral Shear Stress; Shear Energy; Von Mises; 

❖ Theorizes that if strain energy is divided into hydrostatic volume 

changing energy and angular distortion energy, the yielding is primarily 

affected by the distortion energy

Theory: Yielding occurs when the distortion strain energy per unit volume 

reaches the distortion strain energy per unit volume for yield in simple 

tension or compression of the same material



Distortion energy theory

❖ Failure occurs if distortion energy exceeds distortion energy of tension test 

specimen (note: 1, 2, and 3, are principal stresses):

1−2
2+ 2−3

2+ 3−1
2

2

Τ1 2

≥ 𝑆𝑦

❖ Left hand side is defined as von Mises stress ′

❖ In terms of xyz components, in three dimensions

′ =
1

2
𝑥 − 𝑦

2
+ 𝑦 − 𝑧

2
+ 𝑧 − 𝑥

2 + 6 𝑥𝑦
2 + 𝑦𝑧

2 + 𝑧𝑥
2

ൗ1 2

❖ For plane stress (in terms of xyz components):

′ = 𝑥
2 − 𝑥𝑦 + 𝑦

2 + 3𝑥𝑦
2 ൗ1 2

❖ For plane stress (in terms of principal stress components A, and B):

′ = 𝐴
2 − 𝐴𝐵 + 𝐵

2



Distortion energy theory

❖ Von Mises Stress can be thought of as a single, equivalent, or effective 

stress for the entire general state of stress in a stress element

❖ Distortion Energy failure theory simply compares von Mises stress to 

yield strength

′ ≥ 𝑆𝑦
❖ Introducing a design factor,

′ =
𝑆𝑦

𝑛
❖ Expressing as factor of safety,

𝑛 =
𝑆𝑦

′



Distortion energy theory

❖ Criterion for the distortion energy 

theory in 2-D is an equation for an 

ellipse

❖ Distortion Energy curve typically 

equates to about 50% reliability 

from a design perspective

❖ Commonly used for analysis 

situations

❖ The maximum shear stress theory 

falls inside the distortion energy 

theory. Maximum Shear Stress 

theory useful for design situations 

where higher reliability is desired
Intersection of pure shear load line 

𝐴 = −𝐵 =  with failure curve



Example 1

A hot-rolled steel has a yield strength of Syt = Syc = 700MPa and a true strain at 

fracture of f = 0.55. Estimate the factor of safety for the following principal 

stress states based on the maximum shear stress and distortion energy theories:

(a) 490, 490, 0 MPa

(b) 210, 490, 0 MPa

(c) 0, 490, -210 MPa

(d) 0, -210, -490 MPa

(e) 210, 210, 210 MPa

❖ Note: True strain = 0.55 = ln(1+strain), 

❖ Percent elongation  5% is considered ductile

❖ Given Syt = Syc = 700MPa (equal strength in compression & tension)



Example 1

Yield strength of Syt = Syc = 700MPa 

(a) 490, 490, 0 MPa

• MSS: Case 1: A ≥ B ≥ 0 (tensile stresses)

For this case, 1 = A and 3 = 0 and 𝑛 =
𝑆𝑦

𝐴
= 1.43

• DE: ′ = 𝐴
2 − 𝐴𝐵 + 𝐵

2 = 490MPa and 𝑛 =
𝑆𝑦

′
= 1.43

(b) 210, 490, 0 MPa

• MSS: Case 1: A ≥ B ≥ 0 (tensile stresses)

For this case, 1 = A and 3 = 0 and 𝑛 =
𝑆𝑦

𝐴
= 1.43

• DE: ′ = 𝐴
2 − 𝐴𝐵 + 𝐵

2 = 426MPa and 𝑛 =
𝑆𝑦

′
= 1.64



Example 1

Yield strength of Syt = Syc = 700MPa 

(c) 0, 490, -210 MPa

• MSS: Case 2: A ≥ 0 ≥ B (tensile and compressive stresses)

For this case, 1 = A and 3 = B and 𝑛 =
𝑆𝑦

𝐴−𝐵
= 1

• DE: ′ = 𝐴
2 − 𝐴𝐵 + 𝐵

2 = 622MPa and 𝑛 =
𝑆𝑦

′
= 1.13

(d) 0, -210, -490 MPa

• MSS: Case 3: 0 ≥ A ≥ B (compressive stresses)

For this case, 1 = 0 and 3 = B and 𝑛 = −
𝑆𝑦

𝐵
= 1.43

• DE: ′ = 𝐴
2 − 𝐴𝐵 + 𝐵

2 = 426MPa and 𝑛 =
𝑆𝑦

′
= 1.64



Example 1

Yield strength of Syt = Syc = 700MPa 

(e) 210, 210, 210 MPa

• MSS: Not a plane stress case and 3 =  =210MPa and 𝑛 =
Τ𝑆𝑦 2

𝑚𝑎𝑥
=

𝑆𝑦

1−3
→

• DE: ′ =
1−2

2+ 2−3
2+ 3−1

2

2

Τ1 2

= 0 and 𝑛 =
𝑆𝑦

′
→



Mohr theory

❖ Some materials have compressive strengths different from tensile strengths

❖ Mohr theory is based on three simple tests: tension, compression, and shear

❖ Plotting Mohr’s circle for each, bounding curve defines failure envelope



Coulomb-Mohr theory

❖ Curved failure curve is difficult to determine analytically

❖ Coulomb-Mohr theory simplifies to linear failure envelope using only 

tension and compression tests (dashed circles)

From the geometry, derive the 

failure criteria:

𝐵2𝐶2 − 𝐵1𝐶1
𝑂𝐶2 − 𝑂𝐶1

=
𝐵3𝐶3 − 𝐵1𝐶1
𝑂𝐶3 − 𝑂𝐶1

𝐵2𝐶2 − 𝐵1𝐶1
𝐶1𝐶2

=
𝐵3𝐶3 − 𝐵1𝐶1

𝐶1𝐶3

𝐵1𝐶1 =
𝑆𝑡

2
; 𝐵3𝐶3 =

𝑆𝑐

2
;

𝐵2𝐶2 =
1−3

2
;



Coulomb-Mohr theory

❖ To plot on principal stress 

axes, consider three cases:

▪ Case 1: A ≥ B ≥ 0

For this case, 1 = A and 3 = 0

1

𝑆𝑡
−
3

𝑆𝑐
= 1 reduces to 𝐴 ≥ 𝑆𝑡

Failure criteria simplify to:

1

𝑆𝑡
−
3

𝑆𝑐
= 1

❖ Case 2: A ≥ 0 ≥ B

For this case, 1 = A and 3 = B

1

𝑆𝑡
−
3

𝑆𝑐
= 1 reduces to 

𝐴

𝑆𝑡
−
𝐵

𝑆𝑐
≥ 1

❖ Case 3: 0 ≥ A ≥ B

For this case, 1 = 0 and 3 = B

1

𝑆𝑡
−
3

𝑆𝑐
= 1 reduces to 𝐵 ≤ −𝑆𝑐



Coulomb-Mohr theory

❖ Plot three cases on principal stress axes

❖ Similar to Maximum shear stress theory, except with different strengths 

for compression and tension

▪ Case 1: A ≥ B ≥ 0

𝐴 ≥ 𝑆𝑡

▪ Case 2: A ≥ 0 ≥ B

𝐴

𝑆𝑡
−
𝐵

𝑆𝑐
≥ 1

▪ Case 3: 0 ≥ A ≥ B

𝐵 ≤ −𝑆𝑐



Coulomb-Mohr theory

❖ Incorporating factor of safety:

1

𝑆𝑡
−
3

𝑆𝑐
=
1

𝑛

❖ For ductile material, use tensile and compressive yield strengths

❖ For brittle material, use tensile and compressive ultimate strengths

❖ Since failure line is a function of tensile and compressive strengths, shear 

yield strength is also a function of the tensile and compressive yield 

strengths:

𝑆𝑠𝑦 =
𝑆𝑡𝑆𝑐
𝑆𝑡 + 𝑆𝑐



Example 2

A 25-mm-diameter shaft is statically torqued to 230Nm. It is made of cast 

195-T6 aluminum, with a yield strength in tension of 160 MPa and a yield 

strength in compression of 170 MPa. It is machined to final diameter. 

Estimate the factor of safety of the shaft.

For a solid shaft subjected to torsion, the maximum shear stress is given 

by

 =
𝑇𝑟

𝐽
=

32𝑇

𝑑3
= 75MPa 

Given Syt  Syc (unequal strength in compression & 

tension), we should apply Coulomb-Mohr theory

▪ For pure torsion, two non-zero principal 

stresses are 75MPa & -75MPa (see Moh’s

circle)



Example 2

Given Syt = 160MPa and Syc = 170MPa. 

The two principal stresses are 1 = 170MPa and 3 = -75MPa

The factor of safety can be found using 2 approaches: 

1)  
1

𝑆𝑡
−
3

𝑆𝑐
=

1

𝑛
and n = 1.1

2) Find 𝑆𝑠𝑦 =
𝑆𝑡𝑆𝑐

𝑆𝑡+𝑆𝑐
= 82.4MPa; 𝜏max = 75MPa (refer to Mohr’s circle)

Factor of safety 𝑛 =
𝑆𝑠𝑦

𝑚𝑎𝑥
= 1.1



Summary – ductile failure

• Either the maximum-shear-stress theory 

or the distortion-energy theory is 

acceptable for design and analysis of 

materials that would fail in a ductile 

manner.

• For design purposes the maximum-

shear-stress theory is easy, quick to use, 

and conservative.

• If the problem is to learn why a part 

failed, then the distortion-energy theory 

may be the best to use.

• For ductile materials with unequal yield 

strengths, yt in tension and yc in 

compression, the Mohr theory is the 

best available.


