MEMS1028 Mechanical Design 1

Lecture 7

Advanced deformation analysis (Columns)

Objectives

- Explain the concept of buckling
- Design column based on the buckling critical loads
- Analyze eccentric loading in the design of columns
- Design of elements based on impact loadings

Column design

A column is a long, slender member that carries an axial compressive load and that fails due to buckling rather than due to failure of the material of the column.

Stability of Columns

For $P \ge P_{cr}$

- ➤ The column either will remain in the bent position or will completely collapse and fracture
- For axial loads greater than P_{cr} the column is one of unstable equilibrium in that a small disturbance will tend to grow into an excessive deformation

Failure due to buckling

Long columns - central loading

 \diamond Force *P* shown acts along the centroidal axis of the column

- When *P* reaches a critical value, the column becomes unstable
- Critical load depends on the boundary (or end) conditions:

$$P_{cr} = \frac{C\pi^2 EI}{l^2}$$

(a)
$$C = 1$$
 (b) $C =$

(c)
$$C = \frac{1}{4}$$

$$(d) C = 2$$

Long columns – central loading

$$P_{cr} = \frac{C\pi^2 EI}{l^2}$$
 can be rewritten as $\frac{P_{cr}}{A} = \frac{C\pi^2 E}{(l/k)^2}$

- \triangleright Where area moment of inertia $I = Ak^2$
- \triangleright (P_{cr}/A) = critical unit load
- \triangleright A = Area and k = radius of gyration
- \triangleright (l/k) = slenderness ratio

	End-Condition Constant C		
Column End Conditions	Theoretical Value	Conservative Value	Recommended Value*
Fixed-free	$\frac{1}{4}$	$\frac{1}{4}$	$\frac{1}{4}$
Rounded-rounded	1	1	1
Fixed-rounded	2	1	1.2
Fixed-fixed	4	1	1.2

^{*}To be used only with liberal factors of safety when the column load is accurately known.

Long columns – central loading

When to apply
$$\frac{P_{cr}}{A} = \frac{C\pi^2 E}{(l/k)^2}$$

Most designers select point *T* such that

$$(P_{cr}/A) = (S_y/2)$$

where

R

$$(l/k)_1 = \left(\frac{2\pi^2 CE}{S_y}\right)^{1/2}$$

Apply Euler equation if slenderness ratio is greater than $(l/k)_1$

Slenderness ratio $\frac{l}{k}$

Intermediate-length Columns – central loading

Use the parabolic or J. B. Johnson formula if slenderness ratio is equal or less than $(l/k)_1$

Slenderness ratio $\frac{\epsilon}{L}$

Analysis of columns

MATERIALS:

- 1) Modulus of elasticity (E)
- 2) Yield strength (S_v)

CONNECTIONS:

$$C = 1$$
 $C = 2$ $C = 4$ $C = 1/4$

PROPERTIES OF CROSS SECTIONS:

- 1) Area A
- 2) Moment of inertia *I*
- 3) Radius of gyration $k = \sqrt{\frac{I}{A}}$

COLUMN TYPES:

- 1) Slenderness ratio (l/k)
- 2) Transition slender ratio $(l/k)_1 = \sqrt{\left(\frac{2\pi^2 CE}{S_y}\right)}$

If $(l/k) \le (l/k)_1$ then column is short (use Johnson formula

If $(l/k) > (l/k)_1$ then column is long (use Euler formula

1

Example 1

An industrial machine requires a solid, round connecting rod 1m long (between pinned ends) that is subjected to a maximum compressive force of 80kN. Using a safety factor of 2.5, what diameter is required if steel is used, having properties of $S_v = 689 MPa$, E = 203 GPa?

Note: C = 1 for pinned ends; Design overload P = (fs)80kN; where (fs) = 2.5P = 200kNFor a round rod, area $A = \pi r^2$; $I = (1/4)\pi r^4$ Radius of gyration $k = \sqrt{(I/A)}$ k = r/2

Assume Euler's equation is valid:

$$\frac{P_{cr}}{A} = \frac{C\pi^2 E}{(l/k)^2}$$

$$\frac{200(10^3)}{\pi r^2} = \frac{\pi^2(203)(10^9)}{(2/r)^2}$$

$$r^4 = \frac{200(10^3)4}{(203)(10^9)\pi^3}$$

Radius r = 0.0189m or diameter d = 0.0378m

Radius of gyration k = r/2 = 0.00945m

Check the slenderness ratio: (l/k) = 106

Check
$$(l/k)_1 = \left(\frac{2\pi^2 CE}{S_y}\right)^{1/2} = \left(\frac{2\pi^2 209(10^9)}{689(10^6)}\right)^{1/2} = 77$$

Therefore Euler's equation is applicable (assumption is ok)

Example 1 - extension

Repeat example 1, except reduce the length to 200 mm and use aluminum with properties of $S_v = 496MPa$, E = 71GPa.

Example 1 - extension

Assume Euler's equation:
$$\frac{P_{cr}}{A} = \frac{c\pi^2 E}{(l/k)^2}$$

$$\frac{200(10^3)}{\pi r^2} = \frac{\pi^2(71)(10^9)}{(0.2 \times 2/r)^2}$$

Radius r = 0.011m or diameter d = 0.022m

Check the slenderness ratio: (l/k) = 36.4

Check
$$(l/k)_1 = \left(\frac{2\pi^2 CE}{S_y}\right)^{1/2} = \left(\frac{2\pi^2 71(10^9)}{496(10^6)}\right)^{1/2} = 53$$

Assumption wrong. Apply parabolic equation: $\frac{P_{cr}}{A} = S_y - \left(\frac{S_y}{2\pi}\frac{l}{k}\right)^2 \frac{1}{CE}$

$$\frac{200(10^3)}{\pi r^2} = 496(10^6) - \left(\frac{496(10^6)}{2\pi} \frac{0.2}{r/2}\right)^2 \frac{1}{71(10^9)}$$

Radius r = 0.0125m or diameter d = 0.025m

Slenderness ratio (l/k) = 32

Columns with eccentric loading

An eccentric load is one that applied away from the centroidal axis of the Cross section of column

2

Columns with eccentric loading

Use the secant column formula:

$$\sigma_c = \frac{P}{A} \left\{ 1 + (ec/k^2) \sec \left[(l/2k) \sqrt{P/AE} \right] \right\}$$

Note: (ec/k^2) = eccentricity ratio

Note: maximum stress and deflection occur in the outermost fibers of the cross section at the mid-length of the column

м

Short compression members

The magnitude of the maximum compressive stress in the x direction at point B in a strut or short compression member is the sum of a simple component (P/A) and a flexural component (Mc/I); i.e.

$$\sigma_c = \frac{P}{A} \left(1 + \frac{ec}{k^2} \right)$$

Note: (k) = radius of gyration, e = eccentricity of loading, and c = distance of point "B" from neutral axis

> To determine if the member is short, determine

$$\left(\frac{l}{k}\right)_2 = 0.282 \left(\frac{AE}{P}\right)^{1/2}$$

Apply column with eccentric loading equation if slenderness ratio is greater than $(l/k)_2$ and assume short compression member otherwise

A piece of work in the process of manufacture is attached to a cutting machine table by a bolt tightened to a tension of T. The clamp contact is offset from a centroidal axis of the strut AB by a distance "e" as shown. The strut is made of a structural ASTM 36 steel of diameter d and length L. Given: The numerical values are d = 30 mm, e = 3.5 mm, L = 125 mm, T = 2P = 7 kN, E = 200 GPa, Find the largest stress in the strut. Assume strut is pinned at both ends.

The cross-sectional area properties of the strut are:

Radius r = 15mm;

Area
$$A = \pi r^2 = 706.9 \text{ mm}^2$$
;

Area moment of inertia $I = (1/4)\pi r^4 = 39.76 \text{ mm}^4$;

Radius of gyration $k = \sqrt{(I/A)} = 7.5$ mm;

Slenderness ratio:
$$(l/k) = 16.67$$
 and $\left(\frac{l}{k}\right)_2 = 0.282 \left(\frac{AE}{P}\right)^{1/2} = 56.7$

Short column is applicable:

$$\sigma_c = \frac{P}{A} \left[1 + \frac{ec}{k^2} \right] = \frac{3500}{706.9(10^{-6})} \left[1 + \frac{3.5(10^{-3})15(10^{-3})}{(7.5 \times 10^{-3})^2} \right] = 9572 \text{kPa}$$

10

Example 2 – extension

Repeat example 2 using the secant formula

The cross-sectional area properties of the strut are:

Radius r = 15mm;

Area $A = \pi r^2 = 706.9 \text{ mm}^2$;

Area moment of inertia $I = (1/4)\pi r^4 = 39.76 \text{ mm}^4$;

Radius of gyration $k = \sqrt{(I/A)} = 7.5$ mm;

Slenderness ratio:
$$(l/k) = 16.67$$
 and $\left(\frac{l}{k}\right)_2 = 0.282 \left(\frac{AE}{P}\right)^{1/2} = 56.7$

Secant formula:

$$\sigma_c = \frac{P}{A} \left\{ 1 + (ec/k^2) \sec \left[(l/2k) \sqrt{P/AE} \right] \right\} = 9572 \text{kPa}$$

The results indicate that for this short column, the effect of the lateral deflection on stress can be omitted

Shock & impact

- > Impact refers to the collision of two masses with initial relative velocity
- Shock is a more general term that is used to describe any suddenly applied force or disturbance. Thus the study of shock includes impact as a special case

Consider the case of a freely falling weight W = mg

The change in PE of the mass = $mgh + mg\delta = Wh + W\delta$

This energy is stored in the spring = $\frac{1}{2}k\delta^2$

Hence
$$\frac{1}{2}k\delta^2 = Wh + W\delta$$
 or $\delta^2 - \frac{2W}{k}\delta - \frac{2Wh}{k} = 0$

The roots of the quadratic equation are

$$\delta = \frac{W}{k} \pm \frac{1}{2} \sqrt{\left(\frac{2W}{k}\right)^2 + 4\left(\frac{2Wh}{k}\right)} = \frac{W}{k} \pm \frac{W}{k} \sqrt{1 + \left(\frac{2hk}{W}\right)}$$

Force
$$F = k\delta = W \pm W \sqrt{1 + \left(\frac{2hk}{W}\right)}$$

Shock & impact

Note that we can define static deflection as $\delta_{st} = \frac{W}{k}$

When $h >> \delta_{st}$ the $W\delta$ can be neglected and $\delta_{max} = \sqrt{2\delta_{st}h}$

Otherwise
$$\delta = \frac{W}{k} \pm \frac{W}{k} \sqrt{1 + \left(\frac{2hk}{W}\right)} = \delta_{st} \pm \delta_{st} \sqrt{1 + \left(\frac{2h}{\delta_{st}}\right)}$$

and
$$\delta_{max} = \delta_{st} \left(1 + \sqrt{1 + \left(\frac{2h}{\delta_{st}} \right)} \right)$$

Define impact factor as $\delta_{max} = K\delta_{st}$ where $K = 1 + \sqrt{1 + \left(\frac{2h}{\delta_{st}}\right)}$

Maximum stress due to impact $\sigma_{max} = K \sigma_{st}$

Force
$$F = k\delta = W \pm W \sqrt{1 + \left(\frac{2hk}{W}\right)}$$

When h = 0 maximum force $F_{\text{max}} = 2W$

This says that when the weight is released while in contact with the spring but is not exerting any force on the spring, the largest force is double the weight

A weight W is dropped from a height h, striking at midspan a simply supported steel beam of length L. The beam is of rectangular cross section of width b and depth d. Calculate the maximum deflection and maximum stress for these two cases:

- a) The beam is rigidly supported at each end.
- b) The beam is supported at each end by springs.

Given: W = 100 N, h = 150 mm, L = 2 m, b = 30 mm, and d = 60 mmModulus of elasticity E = 200 GPa and spring rate k = 200 kN/m.

The maximum deflection, due to a static load, is $\delta_{st} = \frac{WL^3}{48EI} = 0.154$ mm

The maximum moment (occurs at C) is M=WL/4

Maximum static stress equals $\sigma_{st} = \frac{Mc}{I} = 2.778 \text{MPa}$

Impact factor as
$$K = 1 + \sqrt{1 + \left(\frac{2h}{\delta_{st}}\right)} = 45.15$$

$$\delta_{max} = K\delta_{st} = 6.95 \text{ mm}$$

$$\sigma_{max} = K\sigma_{st} = 125 \text{ MPa}$$

If beam is supported by springs, the static deflection of the beam due to its own bending and the deformation of the springs at the ends is

$$\delta_{st} = \frac{W/2}{k} + \frac{WL^3}{48EI} = \frac{50}{200} + 0.154 = 0.404$$
mm

New impact factor as
$$K = 1 + \sqrt{1 + \left(\frac{2h}{\delta_{st}}\right)} = 28.27$$

$$\delta_{max} = K\delta_{st} = 11.42 \text{ mm}$$

$$\sigma_{max} = K\sigma_{st} = 78.53 \text{ MPa}$$

Ancient Chinese mechanisms

Jie Gao (桔 槹) for water lifting

How would you analyse the 2 supporting bamboo columns?

