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Mechanical Design 1

Lecture 7
Advanced deformation analysis (Columns)



" J
Objectives

Explain the concept of buckling

Design column based on the buckling critical
loads

Analyze eccentric loading in the design of
columns

Design of elements based on impact
loadings
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Column design

A column is a long, slender member that carries an axial compressive
load and that fails due to buckling rather than due to failure of the
material of the column.
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Stability of Columns
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For P = P,

» The column either will remain in the bent position or will completely
collapse and fracture

» For axial loads greater than P, the column is one of unstable equilibrium in
that a small disturbance will tend to grow into an excessive deformation




Fallure due to buckling




Long columns — central loading

¢ Force P shown acts along the centroidal axis of the column

Both ends Both ends One fixed end.  One fixed end, » When P reaches a
Pinne;)d fixed one freeend ~ one pi““f)d = critical value, the
l i l column becomes
{1H | Elg unstable
" ) ; f T > Critical load
1 depends on the
= boundary (or end)
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(a) C =1 (bh)C =4 ((')C_% (d)C =2
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Long columns — central loading

CTC?EI : Per _ CT?E
5 Canberewrittenas —- = L

P, =

> Where area moment of inertia I = Ak?
> (P../A) = critical unit load

» A =Areaand k = radius of gyration

> (l/k) = slenderness ratio

End-Condition Constant C

Column End Theoretical Conservative Recommended
Conditions Value Value Value*
Fixed-free I T 7
Rounded-rounded | 1 1
Fixed-rounded 2 1 1.2
Fixed-fixed 4 1 1.2

*To be used only with liberal factors of safety when the column load is accurately known.



Long columns — central loading

P,  CT?E
When to apply 4 = W2

Most designers select point T such that

(PCT/A) = (Sy/z)

P where
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Intermediate-length Columns —
central loading

Use the parabolic or J. B. Johnson formula if
slenderness ratio is equal or less than (I/k)4

p For (I/k) < (I/k), apply
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Analysis of columns

MATERIALS: PROPERTIES OF CROSS SECTIONS:
1) Modulus of elasticity (E) 1) AreaA
2) Yield strength (S,) 2) Moment of inertia |

3) Radius of gyration k = \/%
CONNECTIONS:

P P o » COLUMNTYPES:
‘ l l 1) Slenderness ratio (1/k)
AW Q% % 2) Transition slender ratio (I/k); = (ZTCSZCE)
y

If (I/k) < (I/k), then column is short (use
Johnson formula

i |

e
-y
I~

3 3 - If ({/k) > (I/k), then column is long (use
pin-pin  fixed-pin fixed-fixed fixed-free Euler formula

C=1 C=2 C=4 C=1/4
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Example 1

An industrial machine requires a solid, round connecting rod 1m long
(between pinned ends) that is subjected to a maximum compressive force of
80kN. Using a safety factor of 2.5, what diameter is required if steel is used,
having properties of S, = 689MPa, E = 203GPa?

Note: C = 1 for pinned ends; @ Y @
Design overload P = (fs)80KN; 80,000 N 80,000 N
where (fs) = 2.5 . ' m N
P = 200kN T
For a round rod, area A = ntr?; §, = 689 MPa

| = (1/4-)7!:7‘4 E = 203 GPa (steel)

Radius of gyration k = /(I /A)
k=r/2



Example 1
Assume Euler’s equation 1s valid:
P.. Cn’E
A~ (U/k)?
200(10%) ®2(203)(10%)
r?z (2/1)3
200(103)4

4 __
T T 203)(109) 73
Radius r =0.0189m or diameter d = 0.0378m
Radius of gyration k = r/2 = 0.00945m
Check the slenderness ratio: (I/k) = 106

2\ 1/2 2 oy 1/2

Check (178, = (75" = (ME200uy ™ _ 77
Therefore Euler’s equation is applicable (assumption is ok)




Example 1 - extension

» Repeat example 1, except reduce the length to 200 mm and use aluminum
with properties of S, = 496MPa, E = 71GPa.

§ D §
80,000 N 80,000 N
200 mm

SF =25
S, = 496 MPa
E =71 GPa (aluminum)



" J
Example 1 - extension

: P CT?E
Assume Euler’s equation: —— =

A (1/k)2
200(10%) =®2(71)(10%)

w2 (0.2 X 2/1)>2
Radius r =0.011m or diameter d = 0.022m
Check the slenderness ratio: (I/k) = 36.4

__ (2m?CE 1/2 _ (2m?71(10°) 1/2 _
Check (/)1 = ( Sy ) - ( 496(106) ) =53
Assumption wrong. Apply parabolic equation: P — 5, — (S—yi)z L
' 2' A Y \a2mk/ CE
200(103 496(10°) 0.2 1
(107) = 496(10°) — (107)
mr? 2t r/2) 71(109)

Radius r =0.0125m or diameter d = 0.025m
Slenderness ratio (I/k) = 32
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Columns with eccentric loading

An eccentric load is one that applied away from the centroidal axis of the
Cross section of column
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Columns with eccentr;ic loading

P
A
X

Use the secant column formula: ‘ |
P ) ' |

o, = Z{l + (ec/k?) sec [(Z/Zk)w/P/AE] Pl
- | !
Note: (ec/k?) = eccentricity ratio 1 v ¥

y
0 p Pe
—| ¢ f-—

(a) (b)

Unit load &4

P

B
y T
_ | .
[ X
eclk®=10. o ! Y .‘: x i
oy
e Suler's curve I
i

Note: maximum stress and deflection
0 o T T ra— occur in the outermost fibers of the cross
section at the mid-length of the column




Short compression members

The magnitude of the maximum compressive stress in the x
direction at point B in a strut or short compression member is
the sum of a simple component (P/A) and a flexural
component (Mc/l); i.e.

GC=§(1+g)

Note: (k) = radius of gyration, e = eccentricity of loading, and
¢ = distance of point “B” from neutral axis
» To determine if the member is short, determine

l AE\Y?
) =o0282 (==
(%), =02 (%)

» Apply column with eccentric loading equation if
slenderness ratio is greater than (I/k)-, and assume short
compression member otherwise

B

h-!

e




Example 2

A piece of work in the process of manufacture is attached to a cutting
machine table by a bolt tightened to a tension of T. The clamp contact is
offset from a centroidal axis of the strut AB by a distance “e” as shown. The
strut is made of a structural ASTM 36 steel of diameter d and length L.
Given: The numerical valuesare d =30 mm, e =3.5mm, L =125 mm,

T =2P =7KkN, E =200 GPa, Find the largest stress in the strut. Assume strut
IS pinned at both ends.

A ¢ A

(1 — |-~

Workpiece Strut




Example 2

The cross-sectional area properties of the strut are:
Radius r = 15mm;

Area A = 22 = 706.9 mm?;

Area moment of inertia I = (1/4)nr* = 39.76 mm#;

Radius of gyration k = /(I/A) = 7.5 mm;

1/2
Slenderness ratio: (I/k) = 16.67 and (é) = 0.282 (AE) = 56.7

2

Short column is applicable:

_P 3500 3.5(1073)15(10~
Gc =~ [1 +— 3 [

706 9(10~ (7.5%1073)2

°)
] =9572kPa



Example 2 — extension

Repeat example 2 using the secant formula

The cross-sectional area properties of the strut are:
Radius r = 15mm,;

Area A = 2r2 =706.9 mm?;

Area moment of inertia I = (1/4)nr* = 39.76 mm#;

Radius of gyration k = \/(I/A) =7.5 mm;

AE
P

) 1/2
Slenderness ratio: (I/k) = 16.67 and ( ) ) = 56.7

i = 0.282(

Secant formula:

o = {1 + (ec/k?) sec |(1/2k)\/P/AE |} = 9572kPa

The results indicate that for this short column, the effect of the lateral
deflection on stress can be omitted



Shock & impact

» Impact refers to the collision of two masses with initial relative velocity
» Shock is a more general term that is used to describe any suddenly
applied force or disturbance. Thus the study of shock includes impact as

a special case
Consider the case of a freely falling weight W = mg
The change in PE of the mass = mgh + mgo=Wh +Wo

This energy is stored in the spring = lkéSz

Hence%kés2 =Wh+W80r82——8—w=0

K
The roots of the quadratic equation are
2w\ 2 2Wh\ W |, W 2hk
8_?i2\/(7) +4( K ) % I 1+(W)

Force F = ko = W+W\/1+ th)

+-I—— W = mg

L



Shock & impact

Note that we can define static deflection as 6, = %
When h >> §, the WS can be neglected and 8,4, = /285

OtherW|se8——+—J1+ 2’”‘) = 5, + 8o 1_|_(2h)

Ost
and 5,4, = S (1 + J1 + (gh)>
st

Define impact factor as 0,4, = K05 Where K = 1 + Jl + (gh)
st

Maximum stress due to impact 6,,,,, = Ko

Force F = k6—W+W\/1+ th)

When h =0 maximum force F,,, = 2W
This says that when the weight is released while in contact with the spring but
IS not exerting any force on the spring, the largest force is double the weight
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Example 3

A weight W is dropped from a height h, striking at midspan a simply
supported steel beam of length L. The beam is of rectangular cross section of
width b and depth d. Calculate the maximum deflection and maximum stress
for these two cases:

a) The beam is rigidly supported at each end.

b) The beam is supported at each end by springs.

Given:W=100N, h=150 mm, L=2m, b =30 mm, and d = 60 mm
Modulus of elasticity E = 200 GPa and spring rate k = 200 kN/m.

W
|

]
|

v e
il

A C B
E; , L %z

| - | — J-|
2 2




Example 3

The maximum deflection, due to a static load, is &5, =

The maximum moment (occurs at C) is M=WL/4

Maximum static stress equals o, = # =2.778MPa

3
wiL” _ 0.154mm
48E]

Impact factoras K =1 + \/1 + (;—h
st

Omax = KO0s=6.95 mm

Omax = Kog:= 125 MPa

If beam is supported by springs, the static deflection of the beam due to its

own bending and the deformation of the springs at the ends is

3
85 = L2+~ = =2 4 0.154 = 0.404mm

New impact factoras K = 1 + \/1 + (

Omax = Kog=11.42 mm
Omax = Kog= 78.53 MPa

) = 45.15

2h

6“) = 28.27



Ancient Chinese mechanisms

Jie Gao (45 18) for water lifting
#“ —
Il

How would you analyse the 2
supporting bamboo columns?

:
J

I
Jl

Connecting link K, (3)

JR:
Bucket K, (4)




