MEMS1028

Mechanical Design 1

Lecture 6

Advanced deformation analysis
(Castigliano’s theorem)
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Objectives

Explain the concept of strain energy and
determine strain energies for common
loadings

Apply Castigliano’s theorem to analyze the
deflections of common engineering elements

Solve statically indeterminate structures
common encountered in engineering
applications



Spring potential energy

= The work done in deforming the spring is stored as potential energy
= The energy is recovered when the load is removed

= The energy is the area under the force-displacement curve

» For a linear force-displacement, the potential energy is given by
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Force F

= This potential energy causes the deformation or
Displacement y strain and is also know as the strain energy




Strain energy

Applied loading deforms an elastic material which results in strain. In the
process, external work done on the elastic member is transformed into strain

energy (this is a type of potential energy which is recoverable in the elastic

zone when the loading is removed)
2

The strain energy can be written in terms of the spring rate as U = —

2k
. . F AE
For tension and compression: k = 5= and U = E " for constant area or in

general formas U = f—dx

T G T?L
For torsion of circular bar: k = i T] and U = %G for constant polar moment

of inertia; or in general formas U = f—dx



Strain energy

The bending dU = %Md@

where ds = pdb and p = %

MZ2ds

Hence dU = lMde =
2 2E1

: M?
Orin general formas U = [ ——ds

MZ?L
For constant I: U = —
2EI




Strain energy

The direct shear U = %FS (I k / o

ol

~1n
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where shear strainisy =

1 F2L
Hence U = EF8 = % for constant area or

FZ
In general formas U = [ ——dx
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Strain energy

For transverse shear in bending:

U —CVZ d
= X
2AG
For constant area:
_ CVZL
_ 246
C = correction factor:
Table 4-1
Strain-Energy Correction Beam Cross-Sectional Shape  Factor €
Factors for Transverse Rectangular 1.2
Shear Circular 111
Source: Richard G. Budynas, Thin-walled tubular, round 2.00

Advanced Strength and Applied L%
Stress Analysis, 2nd ed., Box sections ) 1.00
MecGraw-Hill, New York, 1999, Structural sections' 1.00

Copynght © 1999 The

MeGraw-Hill Companies. 'Use area of web only.



lllustrative example 1

A cantilever beam with a round cross section has a concentrated load F at the end,
as shown. Find the strain energy in the beam

|*~ ! = The FBD is shown for 0 < x < L and the shear and
s bending moment are
" III:-. M — _Fx

e V=-F

T Both bending moment and shear contributed to the

| ) strain energy:

| . »

;

M? cv? _ F?x? CF?
l U=fﬁdx+fmdx—fzﬂdx+f%dx
/' M For round cross section C =1.11 and

U — F2[3 . 1.11F?L
~ 6EI 246G




Castigliano’s Theorem

When a body is elastically deflected by any combination of loads, the
deflection at any point and in any direction is equal to the partial
derivative of strain energy (computed with all loads acting) with respect
to a load located at that point and acting in that direction, i.e.

aU

Si:a_Fl orO

- aTl

Note:
o, 1s the linear displacement at point “I”’ (tension/compression or bending);
F; is the force applied at point “i”’ (tension/compression or bending);
6 is the angular displacement at point “I”’ (bending);

M; is the moment applied at point “i”’ (bending);

¢ 1s the angular twist at point “I”’ (torsion);

T is the torque applied at point “I”” (torsion);

U is the total strain energy computed with all loads acting

€6y
I
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Castigliano’s Theorem

= In applying Castigliano’s theorem, we must find the total strain energy of
all external loadings

= Typically, the total strain energy can be related to the loads through
expression like

U—JLFde+JLT2dx+jLMde+jLCV2dx
), 2AE ), 2G6] ), 2EI ), 2AG

FOF ax 79T 4 aM 5Fx v ax

. Notethat6i=g—g=f0L a:; +fL 0T "‘f foL ZZ;

= |f a system consists of several members, the above will have to include
summations over all members in the system



Castigliano’s Theorem

ou
oM;

ou
Si _a_P'i and Oi =

For axially loaded bar (under single force) in tension or compression:

FaFdx
F? ou L " aF; FL
U_IZAde and 5, _aFi_fo AE  AE

For torsion of circular bar (under single torque):

oT
aTi _ TL
G]  GJ

T—dx

T? ouU L
U=f2—G]dxand(|)i=a—Ti=f0




Castigliano’s Theorem

In the case of a beam, to find the linear and angular deflections in bending:

. ou LM oM
“I”1s expressed as 0; = — = |  ——dXx;

> 1 : —
Linear displacement at dF; 0 EI 9F;

. U LM OM
“I” 1s expressed as 0; = = | —
oM; 0 EI OM;

» Angular displacement at dx;

When it is necessary to obtain the displacement at a point where there is no
corresponding load, we must first place a fictitious load at that point in the
direction of the desired displacement. The displacement is then obtained by
first differentiating the strain energy with respect to the fictitious load and
then setting the fictitious load equal to zero
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Castigliano’s Theorem

"= In the case of a truss consisting of “n” members of lengths “L;”,
axial rigidity “AjE;” and internal force “F;”, the strain energy can

be found by
U= 2, 121413

[13%2]
I

» Linear displacement at point “I” is expressed as

. au F]LJ GFJ

O; 6Fl Z] 1A]E] oF;’

= Similar to bending, it is necessary to apply a fictitious load to
obtain the displacement at a point where there is no corresponding
load
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Summary table

Load type General strain General deflection
energy

Axial U - L g2 4 aFd
= | —= aF
j 2AE 5, = j L
0
Bending L M2dx oM oM
=f o ._JLMaFdxe J M am;
0 ‘7 ), EI . EI
Transverse Lcvadx vV ax
shear u =j 2AC __f 0F;
0 ‘), AG
i L2
Torsion =f T?dx LTgIT;d
o 2GJ b; =JO G}



Example 1

The cantilever beam shown is subjected to a
concentrated load P at the left end. Determine
the deflection and slope at point A using
Castigliano’s theorem (assume negligible strain
energy due to transverse shear)

The total strain energy is due only to the bending moment: U = | —dx

6U

Note that §; =
JF;

i

There is a force P at “A” to find the linear displacement at “A”

The bending moment for O

<x<Lis found to be:

M = —Px
oM _au LM oM L (Px)x L Px? __PL?
or xandSA_aP OElan _fo El OEIdx_SEI
PL3

Deflection at point Ais 8, = —

3EI



Example 1

l =) | =)

To find the angular displacement at A, there must be a bending moment at A
There 1s no bending moment at “A” to find the angular displacement at “A”
A fictitious bending moment M, has to be added at point “A”

The bending moment for 0 < x < L is now

:;ir-ﬁ‘

M= —Px — M,

oM ouU LM oM L (Px—My) L Px PL?

—=—-land b, =—= | '———dx = dx = | —dx =—

M 4 O oM, J0 Eromy fO El 0 EI 2EI
PL?

Slope or angular displacement at point Ais 64 = P



Example 1 — extension

Determine the deflection at point A in example 1

P : .1 , : .
l 1 using Castigliano’s theorem (if the strain energy
El - - -
AI . due to shear is not negligible and the beam has a
, 1 rectangular cross section)

The total strain energy is due only to the bending moment and shear:

o M? cv?
U—fﬁdx+fﬁdx

Note that §; = %

There is a force P at “A” to find the linear displacement at “A”
The bending moment and shear force for 0 < x < L is

M =—PxandV = —P
OM_

aP

and for rectangular cross section C = 1.2

—X



Example 1 — extension

" opJy EI9P ’ o AGOP T o EI ¥ 0
5 ALPx@(i s LCT)d __PL?_+(:PL
AT ), BT T ), AT T3EI T AG
Deflection at point A is §; = —— + —o0r

3EI AG



Example 2

For the wire form of diameter d shown, determine the deflection of point B
in the direction of the applied force F (neglect the effect of transverse shear)

Cut the wire at different sections and draw
the FBDs. Use the FBDs to determine the
loadings in the various sections

| ﬂ.ff:'fr': = F II.:'



Example 2

4
Along BC, the element is in bending and M = Fx for (0<x<a) %f-

|'Hlli-'=" -_— .Ir_.'l

L MOM L Fx? Fa3
6 = ——dx = —dx = —
BC fO El OF 0 EI 3EI

Along CD, the element is in bending and torsion;

For bending M = Fx for (0<x<Db)

LMoOM L Fx? Fb3
For torsion T = Fa for (0<x<h)
L T dT L Fa? Fa?b

0gjar — ~ Jo g GJ

Along DG, the element is in bending in 2 planes;

For 1stbending M = Fa for (0<x<c)

L M oM L Fa?
OpG_bend1 = )y 555 A% = Jy 7 dx =
For 2" bending M = Fb for (0<x<c)

L M oM L Fb?
OpG_bendz = )y 5 57 A% = )y 54X =

Fa?c
El

Fb?c
El

ﬂ-fl".lll - .Ir"l.
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Example 2

The total displacement of the wire Is

0 = Opc + 6CD_bend + SCD_tor + 8DG_bendl + 8DG_bend2

3 3 2 2 2
6=Fa+Fb+Fa b+Fa c+Fbc

3EI 3EI GJ EI El




Deflection of curved beams

¢ A curve beam with an applied force F is shown

 Asection at angle &will have 3 internal loading: a moment M; a shear
force F, and a normal force F,

¢ The total strain energy due to the internal loads are
_ (M?d0 [ FgRA® [ MFgd® [ CF?RdO

U_jZAeE+J 2AE _f AE +J 2AG

The deflection produced by force F is given by

OF OMF
- M(%’Fw)da FeR(aFe> do ( aF9> do CFR(aaI;)dG
6:6_F:j AeE +f AE _f AE +f AG

Neutral axis ~«— Beam Cross-Sectional Shape  Factor C
‘ Rectangular 1.2

il €—++ Circular 111
‘ Thin-walled tubular, round 2.00
|
|

r Box sections’ 1.00

n :-:"e’" Centroidal Structural sections’ 1.00
¢ axis




Deflection of curved beams

» [f the radius is significantly greater than the thickness, the eccentricity “e”
can be ignored

= Generally, the approximated deflection can be simplified by substituting

dx =RdoinU = [ FZAd; + MZ;X fL CV2dx \vhich leads to

6F oM av
+ +
0 0 0

T OF AE EI AG




Example 3

A load of P is applied to a steel curved frame, as shown. Develop an
expression for the vertical deflection o of the free end by considering the
effects of the internal normal and shear forces in addition to the bending
moment. Calculate the value of ¢ for the following data:

a =60 mm, P = 10kN, h =30 mm, b = 15 mm, E = 210GPa, G = 80GPa

b §
Y
B

h
3




"

Example 3
= Note that

F = PcosH

V =Psin®

Taking moments about O
M—-PR+FR=0
M = PR — PR cos @
M = PR(1 — cos0)

E)F_ eaV—'e d = R(1 0
ap_COS ,ap—sm ,an - ( cos 0)



Example 3

do d0 d0
5 = a—U = feF " + foe% + foe% where C=1.2 (rectangular)

5 jnPR(COSG)2d9+jnPR3(1—cos@)2d9+JTcCPR (sin 0)2d0
o 4E 0 El 0 AG

5. — fTE PR(cos 0)2d0 ch PR(1+cos 20)d0 [PR(9+%sin 20) & __ PRT
| = = =

0 AE 0 2AE 2AE o 2AE

TPR3(1 — cos0)%do TPR3[3 1
0y = J = j — 2cos0+ = cos 29]
0 0

El EI 12
_PRPBO o1 T 3PR3n
=g |7 T 4sinbtygsin = TOEl



Example 3

5 _ fnPR(cos 0)2 do N fnPR?’(l — c0s 0)%d0 N anPR (sin 0)2d0
- 0 AE 0 EI 0 AG

1 . 0
5. — ch CPR (sin 0)2d0 ch CPR(1—cos 20)d0 [CPR(Q—gsm 29)] __ CPRT
37 Jo AG —Jo 2AG 2AG 024G

PRTT 3PR3T CPRT
0=0,+0, + 83 = + +
2AE 2EI 2AG

a=60mm, P=10kN, h=30 mm, b =15 mm, E = 210GPa, G = 80GPa
3
Area A = bh = 4.5 x 10~*m? | = % = 337.5 x 10~ 10m¢

For rectangular cross section C = 1.2; R = a + 0.5h = 0.075m;

5 = 0.01(10~3)+ 2.81(10~3)+ 0.04(1073) = 2.86(10~3)m
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Statically indeterminate
problems

A system is over-constrained when the static equilibrium equations (i.e.
force and moment equilibrium conditions) are insufficient to determine

the internal forces and reactions

Such a system is said to be statically indeterminate as it has more unknown
support (reaction) forces and/or moments than static equilibrium equations
The extra constraint supports are called redundant supports

Example:




Statically indeterminate
problems

Procedure for analyzing statically indeterminate problems:

1)
2)

3)

4)

Choose the redundant reaction “R”

Write the equations of static equilibrium for the remaining reactions in
terms of the applied loads and “R” of step 1

All external forces, including both loads and redundant reactions, must
generate displacements compatible with the original supports. Write the
deflection equation(s) for the point at the location of the redundant
reaction of step 1 in terms of the applied loads and “R”. Normally the

deflection is zero and we can determine “R” by solving

5=20 =0
==

The equations from steps 2 and 3 can now be solved to determine the
reactions (Note: If a redundant reaction is a moment, the corresponding
deflection equation is a rotational deflection)



Example 4

A propped cantilevered beam carries a concentrated load P at its midspan.
Find the support reactions

4 1) Choose the redundant reaction “R,”
AT 7 2)  Write the equations of static equilibrium
D B Y Rg, = 0;
Rp, = P — Ry;
[e— L/2 —>-j=— L2 —> i L 4
MB =P E - RAL
3) At “A” the deflection is zero:

Mg S_O_jLMaM
’ ~ "7 ), EIdR,

lﬁ'
F I ] X RBX oM
ForO<x<L/2: M = RAx;ﬁ=x
R, <—1L/2 Li2 5 4

y ForL/2£st:M=RAx—P(x—£);a—M=x
27" 0Ry




Example 4

Combining the terms:

ForO<x<L/2: M = Ryx; M _
dR4
ForL/2<x<L:M = RAx—P(x——) =X
6RA ;
L/2 R, x2 L Ryx? —Px*+P3x
0=20 =j dx+j dx
0 El L/2 EIl
__ Ral® | 1[Rax® Px>  PLx? L _ RaLl® | 1 ([Ral® PL3 RaL® PL3
T 24EI Ell 3 s T ]L/Z_ 24E] El{l ] l 16]}
R4 _ 5P
3 48
B 5P
47 16
11P
Roy =P = Ra=7¢
L 3PL



Ancient Chinese mechanisms

How would you analyse the deflections in these devices?

Quan Heng (1&7) A water lifting device He Yin (#&8K)




