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Mechanical Design 1

Lecture 6

Advanced deformation analysis 

(Castigliano’s theorem)



Objectives

 Explain the concept of strain energy and 
determine strain energies for common 
loadings

 Apply Castigliano’s theorem to analyze the 
deflections of common engineering elements

 Solve statically indeterminate structures 
common encountered in engineering 
applications



Spring potential energy

▪ The work done in deforming the spring is stored as potential energy

▪ The energy is recovered when the load is removed

▪ The energy is the area under the force-displacement curve 

▪ For a linear force-displacement, the potential energy is given by

Force F

Displacement y

𝑈 =
1

2
𝐹𝑦 =

1

2
𝑘𝑦2 =

1

2
𝐹
𝐹

𝑘
=
𝐹2

2𝑘

▪ This potential energy causes the deformation or 

strain and is also know as the strain energy



Strain energy

Applied loading deforms an elastic material which results in strain. In the 

process, external work done on the elastic member is transformed into strain 

energy  (this is a type of potential energy which is recoverable in the elastic 

zone when the loading is removed)

The strain energy can be written in terms of the spring rate as 𝑈 =
𝐹2

2𝑘

For tension and compression: 𝑘 =
𝐹


=

𝐴𝐸

𝐿
and 𝑈 =

𝐹2𝐿

2𝐴𝐸
for constant area or in 

general form as 𝑈 = ׬
𝐹2

2𝐴𝐸
𝑑𝑥

For torsion of circular bar: 𝑘 =
𝑇


=

𝐺𝐽

𝐿
and 𝑈 =

𝑇2𝐿

2𝐺𝐽
for constant polar moment 

of inertia; or in general form as 𝑈 = ׬
𝑇2

2𝐺𝐽
𝑑𝑥



Strain energy

The bending 𝑑𝑈 =
1

2
𝑀𝑑

where 𝑑𝑠 = 𝑑 and  =
𝐸𝐼

𝑀

Hence 𝑑𝑈 =
1

2
𝑀𝑑 =

𝑀2𝑑𝑠

2𝐸𝐼

Or in general form as 𝑈 = ׬
𝑀2

2𝐸𝐼
𝑑𝑠

For constant I: 𝑈 =
𝑀2𝐿

2𝐸𝐼



Strain energy

The direct shear 𝑈 =
1

2
𝐹

where shear strain is  =

𝐿
=


𝐺
=

𝐹

𝐴𝐺

Hence 𝑈 =
1

2
𝐹 =

𝐹2𝐿

2𝐴𝐺
for constant area or

In general form as 𝑈 = ׬
𝐹2

2𝐴𝐺
𝑑𝑥



Strain energy

For transverse shear in bending:

𝑈 = න
𝐶𝑉2

2𝐴𝐺
𝑑𝑥

For constant area:

𝑈 =
𝐶𝑉2𝐿

2𝐴𝐺

C = correction factor:

𝑈 =
𝐶𝑉2𝐿

2𝐴𝐺
for constant area



Illustrative example 1

A cantilever beam with a round cross section has a concentrated load F at the end,

as shown. Find the strain energy in the beam

The FBD is shown for 0  x  L and the shear and 

bending moment are 

𝑀 = −𝐹𝑥
𝑉 = −𝐹

Both bending moment and shear contributed to the 

strain energy:

𝑈 = ׬
𝑀2

2𝐸𝐼
𝑑𝑥 + ׬

𝐶𝑉2

2𝐴𝐺
𝑑𝑥 = ׬

𝐹2𝑥2

2𝐸𝐼
𝑑𝑥 + ׬

𝐶𝐹2

2𝐴𝐺
𝑑𝑥

For round cross section C =1.11 and

𝑈 =
𝐹2𝐿3

6𝐸𝐼
+
1.11𝐹2𝐿

2𝐴𝐺



Castigliano’s Theorem

When a body is elastically deflected by any combination of loads, the 

deflection at any point and in any direction is equal to the partial 

derivative of strain energy (computed with all loads acting) with respect 

to a load located at that point and acting in that direction, i.e.

𝑖 =
𝜕𝑈

𝜕𝐹𝑖
or 𝑖 =

𝜕𝑈

𝜕𝑀𝑖
or 𝑖 =

𝜕𝑈

𝜕𝑇𝑖

Note:

i is the linear displacement at point “i” (tension/compression or bending);

Fi is the force applied at point “i” (tension/compression or bending);

i is the angular displacement at point “i” (bending);

Mi is the moment applied at point “i” (bending);

i is the angular twist at point “i” (torsion);

Ti is the torque applied at point “i” (torsion);

U is the total strain energy computed with all loads acting



Castigliano’s Theorem

▪ In applying Castigliano’s theorem, we must find the total strain energy of 

all external loadings

▪ Typically, the total strain energy can be related to the loads through 

expression like

𝑈 = න
0

𝐿𝐹2𝑑𝑥

2𝐴𝐸
+න

0

𝐿 𝑇2𝑑𝑥

2𝐺𝐽
+න

0

𝐿𝑀2𝑑𝑥

2𝐸𝐼
+න

0

𝐿 𝐶𝑉2𝑑𝑥

2𝐴𝐺

▪ Note that 𝑖 =
𝜕𝑈

𝜕𝐹𝑖
= 0׬

𝐿 𝐹
𝜕𝐹

𝜕𝐹𝑖
𝑑𝑥

𝐴𝐸
+ 0׬

𝐿 𝑇
𝜕𝑇

𝜕𝐹𝑖
𝑑𝑥

𝐺𝐽
+ 0׬

𝐿 𝑀
𝜕𝑀

𝜕𝐹𝑖
𝑑𝑥

𝐸𝐼
+ 0׬

𝐿 𝐶𝑉
𝜕𝑉

𝜕𝐹𝑖
𝑑𝑥

𝐴𝐺

▪ If a system consists of several members, the above will have to include 

summations over all members in the system



Castigliano’s Theorem

𝑖 =
𝜕𝑈

𝜕𝐹𝑖
and 𝑖 =

𝜕𝑈

𝜕𝑀𝑖

For axially loaded bar (under single force) in tension or compression:

𝑈 = ׬
𝐹2

2𝐴𝐸
𝑑𝑥 and 𝑖 =

𝜕𝑈

𝜕𝐹𝑖
= 0׬

𝐿 𝐹
𝜕𝐹

𝜕𝐹𝑖
𝑑𝑥

𝐴𝐸
=

𝐹𝐿

𝐴𝐸

For torsion of circular bar (under single torque):

𝑈 = ׬
𝑇2

2𝐺𝐽
𝑑𝑥 and 𝑖 =

𝜕𝑈

𝜕𝑇𝑖
= 0׬

𝐿 𝑇
𝜕𝑇

𝜕𝑇𝑖
𝑑𝑥

𝐺𝐽
=

𝑇𝐿

𝐺𝐽



Castigliano’s Theorem

▪ In the case of a beam, to find the linear and angular deflections in bending:

➢ Linear displacement at “i” is expressed as 𝑖 =
𝜕𝑈

𝜕𝐹𝑖
= 0׬

𝐿 𝑀

𝐸𝐼

𝜕𝑀

𝜕𝐹𝑖
𝑑𝑥;

➢ Angular displacement at “i” is expressed as 𝑖 =
𝜕𝑈

𝜕𝑀𝑖
= 0׬

𝐿 𝑀

𝐸𝐼

𝜕𝑀

𝜕𝑀𝑖
𝑑𝑥;

▪ When it is necessary to obtain the displacement  at a point where there is no 

corresponding load, we must first place a fictitious load at that point in the 

direction of the desired displacement. The displacement is then obtained by 

first differentiating the strain energy with respect to the fictitious load and 

then setting the fictitious load equal to zero



Castigliano’s Theorem

▪ In the case of a truss consisting of “n” members of lengths “Lj”, 

axial rigidity “AjEj” and internal force “Fj”, the strain energy can 

be found by

𝑈 =෍
𝑗=1

𝑛 𝐹𝑗
2𝐿𝑗

2𝐴𝑗𝐸𝑗

➢ Linear displacement at point “i” is expressed as 

𝑖 =
𝜕𝑈

𝜕𝐹𝑖
= σ𝑗=1

𝑛 𝐹𝑗𝐿𝑗

𝐴𝑗𝐸𝑗

𝜕𝐹𝑗

𝜕𝐹𝑖
;

▪ Similar to bending, it is necessary to apply a fictitious load to 

obtain the displacement  at a point where there is no corresponding 

load



Summary table

Load type General strain 

energy

General deflection

Axial
𝑈 = න

0

𝐿 𝐹2

2𝐴𝐸
𝑑𝑥

𝑖 = න
0

𝐿𝐹
𝜕𝐹
𝜕𝐹𝑖

𝑑𝑥

𝐴𝐸

Bending
𝑈 = න

0

𝐿𝑀2𝑑𝑥

2𝐸𝐼 𝑖 = න
0

𝐿𝑀
𝜕𝑀
𝜕𝐹𝑖

𝑑𝑥

𝐸𝐼
; 𝑖 = න

0

𝐿𝑀
𝜕𝑀
𝜕𝑀𝑖

𝑑𝑥

𝐸𝐼

Transverse 

shear 𝑈 = න
0

𝐿 𝐶𝑉2𝑑𝑥

2𝐴𝐺 𝑖 = න
0

𝐿𝐶𝑉
𝜕𝑉
𝜕𝐹𝑖

𝑑𝑥

𝐴𝐺

Torsion
𝑈 = න

0

𝐿 𝑇2𝑑𝑥

2𝐺𝐽 𝑖 = න
0

𝐿 𝑇
𝜕𝑇
𝜕𝐹𝑖

𝑑𝑥

𝐺𝐽



Example 1
The cantilever beam shown is subjected to a 

concentrated load P at the left end. Determine 

the deflection and slope at point A using 

Castigliano’s theorem (assume negligible strain 

energy due to transverse shear)

The total strain energy is due only to the bending moment: 𝑈 = ׬
𝑀2

2𝐸𝐼
𝑑𝑥

Note that 𝑖 =
𝜕𝑈

𝜕𝐹𝑖

There is a force P at “A” to find the linear displacement at “A”

The bending moment for 0  x  L is found to be:

𝑀 = −𝑃𝑥

𝜕𝑀

𝜕𝑃
= −𝑥 and 𝐴 =

𝜕𝑈

𝜕𝑃
= 0׬

𝐿 𝑀

𝐸𝐼

𝜕𝑀

𝜕𝑃
𝑑𝑥 = 0׬

𝐿 𝑃𝑥 𝑥

𝐸𝐼
𝑑𝑥 = 0׬

𝐿 𝑃𝑥2

𝐸𝐼
𝑑𝑥 =

𝑃𝐿3

3𝐸𝐼

Deflection at point A is 𝐴 =
𝑃𝐿3

3𝐸𝐼



Example 1

To find the angular displacement at A, there must be a bending moment at A

There is no bending moment at “A” to find the angular displacement at “A”

A fictitious bending moment MA has to be added at point “A”

The bending moment for 0  x  L is now

𝑀 = −𝑃𝑥 −𝑀𝐴

𝜕𝑀

𝜕𝑀𝐴
= −1 and 𝐴 =

𝜕𝑈

𝜕𝑀𝐴
= 0׬

𝐿 𝑀

𝐸𝐼

𝜕𝑀

𝜕𝑀𝐴
𝑑𝑥 = 0׬

𝐿 (𝑃𝑥−𝑀𝐴)

𝐸𝐼
𝑑𝑥 = 0׬

𝐿 𝑃𝑥

𝐸𝐼
𝑑𝑥 =

𝑃𝐿2

2𝐸𝐼

Slope or angular displacement at point A is 𝐴 =
𝑃𝐿2

2𝐸𝐼



Example 1 – extension
Determine the deflection at point A in example 1 

using Castigliano’s theorem (if the strain energy 

due to shear is not negligible and the beam has a 

rectangular cross section)

The total strain energy is due only to the bending moment and shear: 

𝑈 = ׬
𝑀2

2𝐸𝐼
𝑑𝑥 + ׬

𝐶𝑉2

2𝐴𝐺
𝑑𝑥

Note that 𝑖 =
𝜕𝑈

𝜕𝐹𝑖
and for rectangular cross section C = 1.2

There is a force P at “A” to find the linear displacement at “A”

The bending moment and shear force for 0  x  L is

𝑀 = −𝑃𝑥 and 𝑉 = −𝑃
𝜕𝑀

𝜕𝑃
= −𝑥



Example 1 – extension

𝐴 =
𝜕𝑈

𝜕𝑃
= න

0

𝐿 𝑀

𝐸𝐼

𝜕𝑀

𝜕𝑃
𝑑𝑥 + න

0

𝐿 𝐶𝑉

𝐴𝐺

𝜕𝑉

𝜕𝑃
𝑑𝑥 = න

0

𝐿 𝑃𝑥 𝑥

𝐸𝐼
𝑑𝑥 + න

0

𝐿 𝐶𝑃

𝐴𝐺
𝑑𝑥

𝐴 = න
0

𝐿𝑃𝑥2

𝐸𝐼
𝑑𝑥 + න

0

𝐿 𝐶𝑃

𝐴𝐺
𝑑𝑥 =

𝑃𝐿3

3𝐸𝐼
+
𝐶𝑃𝐿

𝐴𝐺

Deflection at point A is 𝐴 =
𝑃𝐿3

3𝐸𝐼
+

1.2𝑃𝐿

𝐴𝐺



Example 2

For the wire form of diameter d shown, determine the deflection of point B

in the direction of the applied force F (neglect the effect of transverse shear)

Cut the wire at different sections and draw 

the FBDs. Use the FBDs to determine the 

loadings in the various sections



Example 2

Along BC, the element is in bending and 𝑀 = 𝐹𝑥 for (0xa)

𝐵𝐶 = 0׬
𝐿 𝑀

𝐸𝐼

𝜕𝑀

𝜕𝐹
𝑑𝑥 = 0׬

𝐿 𝐹𝑥2

𝐸𝐼
𝑑𝑥 =

𝐹𝑎3

3𝐸𝐼

Along CD, the element is in bending and torsion;
For bending 𝑀 = 𝐹𝑥 for (0xb)

𝐶𝐷_𝑏𝑒𝑛𝑑 = 0׬
𝐿 𝑀

𝐸𝐼

𝜕𝑀

𝜕𝐹
𝑑𝑥 = 0׬

𝐿 𝐹𝑥2

𝐸𝐼
𝑑𝑥 =

𝐹𝑏3

3𝐸𝐼

For torsion 𝑇 = 𝐹𝑎 for (0xb)

𝐶𝐷_𝑡𝑜𝑟 = 0׬
𝐿 𝑇

𝐺𝐽

𝜕𝑇

𝜕𝐹
𝑑𝑥 = 0׬

𝐿 𝐹𝑎2

𝐺𝐽
𝑑𝑥 =

𝐹𝑎2𝑏

𝐺𝐽

Along DG, the element is in bending in 2 planes;
For 1st bending 𝑀 = 𝐹𝑎 for (0xc)

𝐷𝐺_𝑏𝑒𝑛𝑑1 = 0׬
𝐿 𝑀

𝐸𝐼

𝜕𝑀

𝜕𝐹
𝑑𝑥 = 0׬

𝐿 𝐹𝑎2

𝐸𝐼
𝑑𝑥 =

𝐹𝑎2𝑐

𝐸𝐼

For 2nd bending 𝑀 = 𝐹𝑏 for (0xc)

𝐷𝐺_𝑏𝑒𝑛𝑑2 = 0׬
𝐿 𝑀

𝐸𝐼

𝜕𝑀

𝜕𝐹
𝑑𝑥 = 0׬

𝐿 𝐹𝑏2

𝐸𝐼
𝑑𝑥 =

𝐹𝑏2𝑐

𝐸𝐼



Example 2

The total displacement of the wire is

 = 𝐵𝐶 + 𝐶𝐷_𝑏𝑒𝑛𝑑 + 𝐶𝐷_𝑡𝑜𝑟 + 𝐷𝐺_𝑏𝑒𝑛𝑑1 + 𝐷𝐺_𝑏𝑒𝑛𝑑2

 =
𝐹𝑎3

3𝐸𝐼
+
𝐹𝑏3

3𝐸𝐼
+
𝐹𝑎2𝑏

𝐺𝐽
+
𝐹𝑎2𝑐

𝐸𝐼
+
𝐹𝑏2𝑐

𝐸𝐼



Deflection of curved beams

❖ A curve beam with an applied force F is shown

❖ A section at angle  will have 3 internal loading: a moment M; a shear 

force Fr and a normal force F

❖ The total strain energy due to the internal loads are

𝑈 = න
𝑀2𝑑

2𝐴𝑒𝐸
+ න

𝐹
2𝑅𝑑

2𝐴𝐸
−න

𝑀𝐹𝑑

𝐴𝐸
+න

𝐶𝐹𝑟
2𝑅𝑑

2𝐴𝐺

The deflection produced by force F is given by

 =
𝜕𝑈

𝜕𝐹
= න

𝑀
𝜕𝑀
𝜕𝐹

𝑑

𝐴𝑒𝐸
+ න

𝐹𝑅
𝜕𝐹
𝜕𝐹

𝑑

𝐴𝐸
−න

𝜕𝑀𝐹
𝜕𝐹

𝑑

𝐴𝐸
+න

𝐶𝐹𝑟𝑅
𝜕𝐹𝑟
𝜕𝐹

𝑑

𝐴𝐺



Deflection of curved beams

▪ If the radius is significantly greater than the thickness, the eccentricity “e” 

can be ignored

▪ Generally, the approximated deflection can be simplified by substituting 

𝑑𝑥 = 𝑅𝑑 in 𝑈 = 0׬
𝐿 𝐹2𝑑𝑥

2𝐴𝐸
+ 0׬

𝐿 𝑀2𝑑𝑥

2𝐸𝐼
+ 0׬

𝐿 𝐶𝑉2𝑑𝑥

2𝐴𝐺
which leads to

 =
𝜕𝑈

𝜕𝐹
= න

0

𝐹
𝜕𝐹
𝜕𝐹𝑖

𝑅𝑑

𝐴𝐸
+න

0

𝑀
𝜕𝑀
𝜕𝐹𝑖

𝑅𝑑

𝐸𝐼
+න

0

𝐶𝑉
𝜕𝑉
𝜕𝐹𝑖

𝑅𝑑

𝐴𝐺



Example 3

A load of P is applied to a steel curved frame, as shown. Develop an

expression for the vertical deflection δ of the free end by considering the 

effects of the internal normal and shear forces in addition to the bending 

moment. Calculate the value of δ for the following data: 

a = 60 mm, P = 10kN, h = 30 mm, b = 15 mm, E = 210GPa, G = 80GPa



Example 3

FBD:

▪ Note that

𝐹 = 𝑃 cos 
𝑉 = 𝑃 sin 

▪ Taking moments about O

𝑀 − 𝑃𝑅 + 𝐹𝑅 = 0
𝑀 = 𝑃𝑅 − 𝑃𝑅 cos 𝜃
𝑀 = 𝑃𝑅(1 − cos )

𝜕𝐹

𝜕𝑃
= cos  ,

𝜕𝑉

𝜕𝑃
= sin  , and

𝜕𝑀

𝜕𝑃
= 𝑅(1 − cos )



Example 3

 =
𝜕𝑈

𝜕𝐹
= 0׬

 𝐹
𝜕𝐹

𝜕𝑃
𝑅𝑑

𝐴𝐸
+ 0׬

𝑀
𝜕𝑀

𝜕𝑃
𝑅𝑑

𝐸𝐼
+ 0׬

 𝐶𝑉
𝜕𝑉

𝜕𝑃
𝑅𝑑

𝐴𝐺
where C=1.2 (rectangular)

 = න
0

𝑃𝑅(cos )2𝑑

𝐴𝐸
+න

0

𝑃𝑅3(1 − cos )2𝑑

𝐸𝐼
+ න

0

𝐶𝑃𝑅 (sin )2𝑑

𝐴𝐺

1 = 0׬
 𝑃𝑅(cos )2𝑑

𝐴𝐸
= 0׬

 𝑃𝑅(1+cos 2)𝑑
2𝐴𝐸

=
𝑃𝑅(+1

2
sin 2)

2𝐴𝐸 0



=
𝑃𝑅
2𝐴𝐸

2 = න
0

𝑃𝑅3(1 − cos )2𝑑

𝐸𝐼
= න

0

𝑃𝑅3

𝐸𝐼

3

2
− 2 cos +

1

2
cos 2

=
𝑃𝑅3

𝐸𝐼

3

2
− 2 sin +

1

4
sin 2

0



=
3𝑃𝑅3

2𝐸𝐼



Example 3

 = න
0

𝑃𝑅(cos )2𝑑

𝐴𝐸
+න

0

𝑃𝑅3(1 − cos )2𝑑

𝐸𝐼
+ න

0

𝐶𝑃𝑅 (sin )2𝑑

𝐴𝐺

3 = 0׬
 𝐶𝑃𝑅 (sin)2𝑑

𝐴𝐺
= 0׬

 𝐶𝑃𝑅(1−cos 2)𝑑
2𝐴𝐺

=
𝐶𝑃𝑅(𝜃−

1

2
sin 2)

2𝐴𝐺 0



=
𝐶𝑃𝑅
2𝐴𝐺

 = 1 + 2 + 3 =
𝑃𝑅
2𝐴𝐸

+
3𝑃𝑅3
2𝐸𝐼

+
𝐶𝑃𝑅
2𝐴𝐺

a = 60 mm, P = 10kN, h = 30 mm, b = 15 mm, E = 210GPa, G = 80GPa

Area 𝐴 = 𝑏ℎ = 4.5 × 10−4m2; 𝐼 =
𝑏ℎ3

12
= 337.5 × 10−10m4; 

For rectangular cross section 𝐶 = 1.2; 𝑅 = 𝑎 + 0.5ℎ = 0.075m;

 = 0.01(10−3)+ 2.81(10−3)+ 0.04 10−3 = 2.86(10−3)m



Statically indeterminate 

problems

❖ A system is over-constrained when the static equilibrium equations (i.e. 

force and moment equilibrium conditions) are insufficient to determine 

the internal forces and reactions

❖ Such a system is said to be statically indeterminate as it has more unknown 

support (reaction) forces and/or moments than static equilibrium equations

❖ The extra constraint supports are called redundant supports

❖ Example:

Ax

Ay By

MA



Statically indeterminate 

problems

Procedure for analyzing statically indeterminate problems:

1) Choose the redundant reaction “R” 

2) Write the equations of static equilibrium for the remaining reactions in 

terms of the applied loads and “R” of step 1

3) All external forces, including both loads and redundant reactions, must 

generate displacements compatible with the original supports. Write the 

deflection equation(s) for the point at the location of the redundant 

reaction of step 1 in terms of the applied loads and “R”. Normally the 

deflection is zero and we can determine “R” by solving 

 =
𝜕𝑈

𝜕𝑅
= 0

4) The equations from steps 2 and 3 can now be solved to determine the 

reactions (Note: If a redundant reaction is a moment, the corresponding 

deflection equation is a rotational deflection)



Example 4

A propped cantilevered beam carries a concentrated load P at its midspan. 

Find the support reactions

RBy

RBx

MB

1) Choose the redundant reaction “RA” 

2) Write the equations of static equilibrium

𝑅𝐵𝑥 = 0;

𝑅𝐵𝑦 = 𝑃 − 𝑅𝐴;

𝑀𝐵 = 𝑃
𝐿

2
− 𝑅𝐴𝐿

3) At “A” the deflection is zero:

 = 0 = න
0

𝐿 𝑀

𝐸𝐼

𝜕𝑀

𝜕𝑅𝐴
𝑑𝑥

For 0  x  L/2: 𝑀 = 𝑅𝐴𝑥; 
𝜕𝑀

𝜕𝑅𝐴
= 𝑥

For L/2  x  L: 𝑀 = 𝑅𝐴𝑥 − 𝑃(𝑥 −
𝐿

2
); 

𝜕𝑀

𝜕𝑅𝐴
= 𝑥



Example 4
Combining the terms:

For 0  x  L/2: 𝑀 = 𝑅𝐴𝑥; 
𝜕𝑀

𝜕𝑅𝐴
= 𝑥

For L/2  x  L: 𝑀 = 𝑅𝐴𝑥 − 𝑃(𝑥 −
𝐿

2
); 

𝜕𝑀

𝜕𝑅𝐴
= 𝑥

 = 0 = න
0

Τ𝐿 2𝑅𝐴𝑥
2

𝐸𝐼
𝑑𝑥 + න

Τ𝐿 2

𝐿 𝑅𝐴𝑥
2 − 𝑃𝑥2 + 𝑃

𝐿
2 𝑥

𝐸𝐼
𝑑𝑥

0 =
𝑅𝐴𝐿

3

24𝐸𝐼
+

1

𝐸𝐼

𝑅𝐴𝑥
3

3
−

𝑃𝑥3

3
+

𝑃𝐿𝑥2

4 Τ𝐿 2

𝐿

=
𝑅𝐴𝐿

3

24𝐸𝐼
+

1

𝐸𝐼

𝑅𝐴𝐿
3

3
−

𝑃𝐿3

3
+

𝑃𝐿3

4
−

𝑅𝐴𝐿
3

24
−

𝑃𝐿3

24
+

𝑃𝐿3

16

𝑅𝐴

3
=

5𝑃

48

𝑅𝐴 =
5𝑃

16

𝑅𝐵𝑦 = 𝑃 − 𝑅𝐴 =
11𝑃

16

𝑀𝐵 = 𝑃
𝐿

2
− 𝑅𝐴𝐿 =

3𝑃𝐿

16



Ancient Chinese mechanisms

Quan Heng (權衡)

How would you analyse the deflections in these devices?

A water lifting device He Yin  (鶴飲)


