
MEMS1028 

Mechanical Design 1

Lecture 5

Advanced deformation analysis (deflection)



Objectives

 Describe the relationships between shear 
force and bending moments

 Analyze beam deflections using singularity 
functions and superposition

 Determine spring rates, spring energy and 
combining spring rates to determine the 
characteristics of flexural elements in 
engineering designs



Shear force & bending moment
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Deflection due to bending

➢ Deflection = y

➢ Slope = dy/dx = 
➢ Distributed load = q ()

➢ Shear force = V

➢ Bending moment = M

➢ All parameters can be functions of x

I. The square of the slope of the beam is 

negligible compared to unity

II. The beam deflection due to shearing 

stresses is negligible (a plane section is 

assumed to remain plane)

III. The values of E and I remain constant 

for any interval along the beam
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Deflection due to bending

➢ Integrating constants are determined from boundary conditions; e.g.



Singularity functions

A singularity function is 

expressed as 𝑥 − 𝑎 𝑛 where 

n is any integer (positive or 

negative) including zero, 

and a is a constant equal to 

the value of x at the initial 

boundary of a specific 

interval along the beam 

(note: the singularity 

functions are for loading q)



Example 1

Determine the slope and displacement at point D

using singularity functions given EI = 100MNm2

Sum moments about B: σ𝑀𝐵 = 0 8𝑅𝐴 = 150 6 + 20 8 4
𝑅𝐴 = 192.5kN

192.5 + 𝑅𝐵 − 150 − 20 8 4 = 0
𝑅𝐵 = 117.5kN

Sum of vertical forces: σ𝐹𝑦 = 0

Draw the FBD and find the reactions at the supports:



Example 1

Use tables to express general distributed loads 

as singularity functions of x for 0  x  L:

𝑞 = 192.5 103 𝑥 −1 − 20 103 𝑥 0 − 150 103 𝑥 − 2 −1 + 117.5(103) 𝑥 − 8 −1

𝑉 = 192.5 103 𝑥 0 − 20 103 𝑥 1 − 150(103) 𝑥 − 2 0 + 117.5(103) 𝑥 − 8 0
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Example 1

0  x  L

Evaluate the integration constants using 

boundary conditions and substitute 

these into the equations:

192.5kN 117.5kN
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At x=0, y=0: C2 = 0 (Note interpretation of 𝑥 𝑛 and 𝑥 − 2 𝑛)
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Example 1

The slope and displacement given EI = 100MNm2

At point D (where x = 2):
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Superposition



Superposition

Table A-9 in text has more tables



Example 1

Using superposition:

𝑦1 =
−150 103 6 2

6 100 106 8
82 − 62 − 22 = −9mm



Example 1

Using superposition:

𝑦2 =
−20 103 2

24 100 106
23 − 2 8 22 + 83 = −7.6mm



Example 1

Using superposition:

𝑦2 =
−𝑤

24𝐸𝐼
𝑥4 − 2𝐿𝑥3+ 𝐿3𝑥𝑦1 =

−𝑃𝑏

6𝐸𝐼𝐿
𝐿2 𝑥 − 𝑏2𝑥 − 𝑥3

𝑑

𝑑𝑥
𝑦1 =

−𝑃𝑏

6𝐸𝐼𝐿
𝐿2 − 𝑏2− 3𝑥2

𝑑

𝑑𝑥
𝑦2 =

−𝑤

24𝐸𝐼
4𝑥3 − 6𝐿𝑥2+ 𝐿3

At = 2:  𝑦 = 𝑦1 + 𝑦2 = −9 − 7.6 = −16.6mm

At = 2:   = 1+ 2 = −0.003 − 0.00293 = −5.93×10−3rad



Spring rates

Beam deflections can be used as spring: e.g. diving board

See Appendix A-9

Assume F-y is linear at L At L: spring rate is

𝑘 =
𝐹

𝑦
=
3𝐸𝐼

𝐿3



Spring rates

Determine the spring rate for the following beam at point B:

In general: 𝑘 =
𝐹

𝑦
=

force

deformation

At B: spring rate is

𝑘 =
𝐹

𝑦
=
48𝐸𝐼

𝐿3



Spring rates

The total extension or contraction of a uniform bar in pure tension or compression,

respectively, is given by

 =
𝐹𝐿

𝐴𝐸

What is the equivalent spring rate for an axially loaded bar?

Axially load bar in tension/compression, spring rate is given by

𝑘 =
𝐹


=
𝐴𝐸

𝐿



Spring rates

The angular deflection of a hollow or solid circular bar under torsion is given by

 =
𝑇𝐿

𝐺𝐽

What is the equivalent torsional spring rate for the circular bar?

Circular bar under torsion, spring rate is given by

𝑘 =
𝑇


=
𝐺𝐽

𝐿



Spring potential energy

▪ The work done in deforming the spring is stored as potential energy

▪ The energy is recovered when the load is removed

▪ The energy is the area under the force-displacement curve 

▪ For a linear force-displacement, the potential energy is given by

Force F

Displacement y
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1

2
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𝐹
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▪ This potential energy causes the deformation or 

strain and is also know as the strain energy



Springs combination

▪ The spring rate changes when springs are connected in series and 

parallel

▪ For “n” springs with rates k1, k2, … kn connected in series, the 

equivalent spring rate keq is given by

1

𝑘𝑒𝑞
=

1

𝑘1
+

1

𝑘2
+⋯+

1

𝑘𝑛

• For “n” springs with rates k1, k2, … kn connected in parallel, the 

equivalent spring rate keq is given by

𝑘𝑒𝑞 = 𝑘1 + 𝑘2 +⋯+ 𝑘𝑛



Example 2

Determine the torsional spring constant of the steel propeller shaft shown

Hollow cross section 1:

D1=0.3m and d1=0.2m

Hollow cross section 2:

D2=0.25m and d2=0.15m

Circular bar under torsion, 

𝑘 =
𝑇


=
𝐺𝐽

𝐿
=
𝐺𝜋(𝐷4 − 𝑑4)

32𝐿

𝑘1 =
80 × 109𝜋 0.34 − 0.24

32(2)
𝑘1 = 25.5255MNm/rad

𝑘2 =
80 × 109𝜋 0.254 − 0.154

32(3)
𝑘2 = 8.9012MNm/rad

Spring connected in series

𝑘𝑒𝑞 =
𝑘1𝑘2

𝑘1 + 𝑘2
𝑘𝑒𝑞 = 6.6MNm/rad



Applications of flexural elements

Buckles

Leaf spring in trailer



Design analysis

How would you analyse the spring rates for the following chair design?


