MEMS1028

Mechanical Design 1

Lecture 5
Advanced deformation analysis (deflection)
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Objectives

Describe the relationships between shear
force and bending moments

Analyze beam deflections using singularity
functions and superposition

Determine spring rates, spring energy and
combining spring rates to determine the
characteristics of flexural elements in
engineering designs



Shear force & bending moment

d?y

dx* —4q
(a) Internal forces

(positive shear and positive bending moment)



Deflection due to bending

d*y q > Deflection =y
dx* _ El > Slope =dy/dx =6
> Distributed load =g ({)
d3y V » Shear force =V
dx3  El » Bending moment = M
» All parameters can be functions of x
d2y M I.  The square of the slope of the beam is
%2 El negligible compared to unity
1. The beam deflection due to shearing
dy stresses is negligible (a plane section is
— =0 assumed to remain plane)
dx 11l. The values of E and | remain constant

for any interval along the beam



Deflection due to bending

» Integrating constants are determined from boundary conditions; e.g.
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Singularity functions

Function Graph of f, (x) Meaning
Concentrated  (x-u)” (x—a)?=0 x#a A singularity function is
(unit doublet ‘ o T e xma expressed as {x — a)" where
-~ R any integer (positive or
—— negative) including zero,
Concentrated - e o e and a Is a constant equal to
(unic impulse) ‘ 1 [ aem ey the value of x at the initial

TP _boundary of a specific
interval along the beam

Unit step G- {) T2 (note: the singularity
‘ ‘ ! | = a0y = x = ap functions are for loading gT)
SN |
Ramp o x —a)! = {{: — : ; Z ! ‘j[ﬂ
| [ , {x —ay
i i
x I | X
D I mell

"W. H. Macaulay, “Note on the deflection of beams” Messenger of Mathematics, vol. 48, pp. 129-130, 1919,



150 kN p
2m
|H 20 kEN/m
l l Determine the slope and displacement at point D
Al Yy v v - 'H using singularity functions given El = 100MNm?
D
S m

Draw the FBD and find the reactions at the supports:

Sum moments about B: Y, Mgz =0 8R, = 150(6) + 20(8)(4)
R, = 192.5kNT

Sum of vertical forces: 3, F, = 0 192.5+ Rz — 150 — 20(8)(4) =0
R, = 117.5kNT



w . Example 1
[T
I D %ﬁ Use tables to express general distributed loads
$m as singularity functions of x for 0 <x < L:

192.5kN 117.5kN

g = 192.5(103)(x)~1 — 20(103)(x)° — 150(103)(x — 2)~1 + 117.5(103)(x — 8)~1
V = 192.5(103)(x)° — 20(103)(x)! — 150(103)(x — 2)° + 117.5(103)(x — 8)°

EI d?y A 1 )
1—03@ 1925(x) — 20§(x> — 150(3(,' — 2) + 1175(36 — 8)

EI d 1 1 1

1—03£ — 192.5—(x)2 20— (x)° — 1505 (x — 2)2 + 117.5>(x = 8)* + G,

T03Y = 192.5— (x)3 — 20 (x)4 — 150— (x — 23 +117.5- (x — 8)3+Cix + C,



150 kN
2n Example 1
20 kEN/m
N | M l l | l Evaluate the integration constants using
D boundary conditions and substitute
< | these into the equations: D<x<l
192.5kN 117.5kN

—19251( )3 201()4 1501( 2)3+11751( 8)3+C,x + C
103y— . 6.x 24x 6x . 6x 1X 2

At x=0, y=0: C, = 0 (Note interpretation of (x)"™ and (x — 2)")
(8— 2)3

At x=8, y=0: 0 = 192. 5——20——150 +117.5-(8 — 8)3+8(;
C, _—951

Y= 192.5— (x)3 — 20 (x)4 — 150— (x —2)3 +117.5- (x —8)3 — 951x



Example 1
1 20 kN/m
L | -
A B The slope and displacement given EI = 100MNm?
b At point D (where x = 2):
5 1m

El dy 1 1 1 5 1 2
5= = 19252 (x)2 = 202 (x)° — 150 (x — 2)2 + 11755 (x — 8)? — 951
dy _( 103 27 2° _ i
2 = (=) (192.5% —20Z — 951 )= —5.93x10"rad
Y= 192.5— (x)3 — 20 (x)4 — 150— (x —2)3 +117.5- (x — 8)3 — 951x

103 23 2*
y = (o) (192.5% - 202 — 951 x 2) = —16.6mm
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Superposition

Cantilevered Beam Slopes and Deflections
Elastic Curve

Beam Slepe Deflection
N M, L M, lf M,x*
= El e Y - 2EI
“'.I: Fon Lgal
~ S3ET | = 2Ux + 5 17)
O0=x=1L/2
wil! wil
- " -
max WET L IAE] - f.‘
b= — (B = L)
IS4ET
Li2=x=L
o wol wyl’ o (10} - 1047 Sy’ g
T e— 'L T — L ——— - .‘ T = - - N
ms T AE] - R 120E]L ' v
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Superposition

Elastic Curve

Simply Supported Beam Slopes and Deflections

Beam Slope Deflection
i‘ — ]t v = .N_H (16 — 4L + 9L)
w _; .13 v — _— L -
, 8, 6 =— - 1 =12 T68E] O0=x=L/2
%:- o L 3
> ' » “ . == = " o - :
| LH| & Twl? Vuue = —0006563—— | "~ 3EI e as
P, T ¥ 0; = s - +17x - 12
2 2 ISAE] = (0.460R e Hit
atx = 0.4598L LPpsx<l
6, = ~Two M‘.,I.‘
' 360EI Yman = —0.006325 _NoX (3 — 1022 + 71Y)
= VU = om— QN = b ma , -
: 30ETL
o, = WOk atx = 0.5193L oual
* ~ 3SEl

Table A-9 in text has more tables
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Example 1

Using superposition:

P = 150 kN
150 kN g w = 20 kN/m
20 kN/m = +
{ Nttty -
A& ] B D <—>| D
. x=2m
D L=8m ——L=8m
Beam Slope Deflection Elastic Curve
v
P
e —Pab(L + b) . _Pbx(Lz—bz—xz)
4 om0 [l 6EIL S Pha 6EIL
X v — (LZ - b2 _ a2)
= : b_1 o Pab(L + a) teg | OEILL <y
L . 27 6EIL =+r=da
—150(103)(6)(2)
Y= (82 — 62 — 22) = —9mm

6(100)(10°)8
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Example 1

Using superposition:
P = 150 kN

150 kN w = 20 kN/m
’ 2m

20 kN/m I
/ i & ' + JIm_l Y ¥ B
G e W
A& ] B D ‘___JI)
® x=2m
D L=8m «— L =8m

Beam Slope Deflection Elastic Curve
v
L |
" -wl? —SwlL* WX s 5 o o3
Y y Y Y Y . = y = e — 4
x| e T 4E] Pmax = 3R4ET V=R L)
Omax Vmax
—20(103)(2)

Y2 = S2ct00) (105 &~ 2(8)2+ 89 = ~7.6mm



Example 1
Using superposition:
P = 150 kN
150 kN s . ~l,1\1:,,/
e 7\1 = ad l . T ,'\[ ’J‘ ,Hvl ﬂ B
l 3 J* | /l/' . = //: == ‘!1)‘:_i"’/<—
pe I e
D o ~——L=8m L=8m ——»
—Ph —w
y, = il (L2 x — b%x — x3) Y, = aF] (x* — 2Lx3 + L3x)
At=2: y=y,+y,=-9-7.6 = -16.6mm
d —Pb a o TW s 2473
G =g — =3 Gy = g (X — 6Lt 4 L)

At=2: 0= 0, +0,=—0.003 —0.00293 = —5.93x10%rad



Spring rates

Beam deflections can be used as spring: e.g. diving board

Ri=V=F M =Fl

! g M=F{x-D
k Py : 3l
v W= x 3
S " REI .
Fi’
..l'II'I'JiI.E. =
3E]

Assume F-y is linear at L At L: spring rate is

x

M

' F  3EI

x k:—_—
/ y L3

See Appendix A-9




Spring rates

Determine the spring rate for the following beam at point B:

v

-
I-d
b A
.y
J—
=
]
-
=i
o
Il
I‘:l:

-:-..-‘"-—-——_-—-"...‘-.l. ! .F
1n, R, My =" My =—(l—x)
V
F.
Vap = o (467 — 31 o _
48EI At B: spring rate IS
- FP
- Vmax = ARE] k . E . 4‘8EI
M - y L3
... _F force
In general: k = y  deformation




Spring rates

The total extension or contraction of a uniform bar in pure tension or compression,
respectively, is given by
FL

6=E

What is the equivalent spring rate for an axially loaded bar?

Axially load bar in tension/compression, spring rate is given by

_F _AE
8 L



Spring rates

The angular deflection of a hollow or solid circular bar under torsion is given by
o Tk
=G
What is the equivalent torsional spring rate for the circular bar?

Circular bar under torsion, spring rate is given by

L



Spring potential energy

= The work done in deforming the spring is stored as potential energy
= The energy is recovered when the load is removed

= The energy is the area under the force-displacement curve

» For a linear force-displacement, the potential energy is given by

gl 1, 1 F_F
2 YT T Y T ok

Force F

= This potential energy causes the deformation or
Displacement y strain and is also know as the strain energy




Springs combination

= The spring rate changes when springs are connected in series and
parallel

= For “n” springs with rates Ky, k, ... k, connected in series, the
equivalent spring rate k, Is given by

X X
k,

k
1 1 1 1 | k, ke,
— ==t =+t — =

» For “n” springs with rates ky, k,, ... k, connected in parallel, the
equivalent spring rate kg, Is given by

keg = ky + kg + -+ ki, %’ﬁ%h ?k = gk
n €q
x'l xl




Example 2

Determine the torsional spring constant of the steel propeller shaft shown

Hollow cross section 1: Circular bar under torsion,
D,=0.3m and d,=0.2m \ roL_0 _ Gr(D* —d*)
/ 0 L 32L
ﬁ 80 x 10°7(0.3* — 0.2%)
7
3 32(2)

k; = 25.5255MNm/rad
80 x 10°7(0.25* — 0.15%)

2~ 32(3)
k, = 8.9012MNm/rad
Spring connected in series

Hollow cross section 2: - kik;
D,=0.25m and d,=0.15m Ukt
keq = 6.6MNmM/rad
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Applications of flexural elements
Vi

Leaf spring in trailer

Secondary sensitive axis

Primary Bl

sensitive axis hinge
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Design analysis

How would you analyse the spring rates for the following chair design?




