
MEMS1028 

Mechanical Design 1

Lecture 3 part 1

Load & stress analysis (Torsion & Combined 

loadings)



Objectives

 Analyze torque and torsional shear in power 
transmission bars, non-circular shafts, 
closed thin-walled tubes and open thin-
walled sections

 Analyze principal stresses and maximum 
shear stresses in plane stress problems  

 Apply generalized 3D stresses and Hooke’s 
law in engineering design



Power transmission

Solid shaft: polar moment of inertia 
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Hollow shaft; polar moment of inertia 

𝐽 =

32

𝑑𝑜
4 − 𝑑𝑖

4 =

2
𝑟𝑜
4 − 𝑟𝑖

4

Shaft power transmission: 𝑃 = 𝑇

❖ Angular frequency: 𝜔 = 2𝜋𝑓 (rad/s) 

❖ Frequency f in Hz (rev/s)

❖ Power P (Watts)

❖ Torque T (Nm)



Torque and torsion

For circular member:

Shear stress  =
𝑇
𝐽

Angle of twist  =
𝑇𝐿

𝐽𝐺
Shear strain  =


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max =
𝑇𝑟

𝐽

 ∝ 𝑇
 ∝ 𝐿

If linear elastic, 

Hooke’s law applies: 

 = G



Solid shaft: 
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Stress profiles:

Circular shafts



Non-circular shafts

•Cross-sections of 

noncircular (non-axis-

symmetric) shafts are 

distorted when subjected 

to torsion
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Closed thin-walled tubes
• For closed thin-wall tubes (i.e. r >> t) under 

torsion; summing forces in the x-direction on AB:

Shear flow is constant

𝐴𝑡𝐴 = 𝐵𝑡𝐵 = 𝑎𝑣𝑒𝑡 = 𝑞 (shear flow)

𝜏𝑎𝑣𝑒 =
𝑇

2𝑡𝐴𝑚

1 = angular twist (rad) per unit of length of the tube; 

Torque T (Nm); G = shear modulus;

Am = area enclosed by the section median line;

Lm = length of section median line

For constant wall thickness 𝑡:

1 =
𝑇𝐿𝑚

4𝐺𝐴𝑚
2 𝑡



Open thin-walled sections

For open thin-walled sections under torsion:

 = 𝐺1𝑐 =
3𝑇

𝐿𝑐2

❖ 1 = angular twist (rad) per unit of length of the tube; 

❖ Torque T (Nm); G = shear modulus;

❖ Wall thickness = c;

❖ L = length of median line



Illustrative example 1

Shaft BC is hollow with inner and outer diameters of 90 mm and 120 mm, 

respectively.  Shafts AB and CD are solid of diameter d.  For the loading shown, 

determine the required diameter d of shaft AB if the allowable shearing stress in 

these shafts is 65 MPa.



Illustrative example 1

Cut sections through shafts AB and BC and perform static equilibrium 

analysis to find torque loadings

෍𝑀𝑥 = 0 = 6 − 𝑇𝐴𝐵

𝑇𝐴𝐵 = 6kNm

Given max=65MPa:

𝑚𝑎𝑥 =
𝑇𝑟

𝐽
=

𝑇𝐴𝐵𝑟

2
𝑟4

𝑟 = 38.9(10−3)m or d =77.8mm



Combined loadings

❖ A shaft is normally designed to 
resist both torsion and bending 
stress

Transverse loading applied to a short 

beam results in normal and shearing 

stresses in transverse sections (which 

cannot be ignored)

How should we consider these combinations of different stresses?



Summary of basic loadings

Loading Normal stress 

()

Shear stress 

()

Axial
 =

𝑃

𝐴

-

Direct shear -
 =

𝑉

𝐴

Torsion -
 =

𝑇𝑟

𝐽

Bending
 = −

𝑀𝑦

𝐼
 =

𝑉𝑄

𝐼𝑡



Plane stress

➢ Many practical engineering problems can be 

simplified by considering only three 

independent stresses – called plane stress on a 

2D element (i.e. two parallel faces of the small 

element shown are assumed to be free of stress)

➢ Example: state of plane stress occurs on the 

free surface of a structural element or machine 

component, i.e., at any point of the surface not 

subjected to an external force



Illustrative combinations

Axial & torsion Axial & bending



Illustrative combinations
Torsion & bending Top element at B:

Left element at B:



Plane stress transformation

Given Plane Stress State: What are new stresses after 

a rotation of ?



Plane stress transformation

𝜎𝑥′ =
𝜎𝑥 + 𝜎𝑦

2
+
𝜎𝑥 − 𝜎𝑦

2
cos 2 𝜃 + 𝜏𝑥𝑦 sin 2 𝜃

𝜎𝑦′ =
𝜎𝑥 + 𝜎𝑦

2
−
𝜎𝑥 − 𝜎𝑦

2
cos 2 𝜃 − 𝜏𝑥𝑦 sin 2 𝜃

𝜏𝑥′𝑦′ = −
𝜎𝑥 − 𝜎𝑦

2
sin 2 𝜃 + 𝜏𝑥𝑦 cos 2 𝜃

➢ Tensile normal stresses are positive

➢ Shearing stress pointing in positive direction of axis defined by 

second subscript is positive 

➢ Positive angle measured counterclockwise from reference x-axis



Principal stresses

➢ The transformation equations provides a means for finding 

the normal and shearing stresses on different planes through 

a point in the stressed element

➢ As the element is rotated through an angle θ, the normal and 

the shearing stresses on different planes vary continuously

➢ For design purposes, critical stress at the point are usually 

the maximum tensile (or compressive) and shearing stresses

➢ The principal stresses are the maximum normal stress σmax

and minimum normal stress σmin.

➢ How do we find the principal stresses and maximum 

shearing stress?



Mohr’s circle – plane stress

𝜎𝑥′ − 𝜎𝑎𝑣𝑔
2
+ 𝜏𝑥′𝑦′

2 = 𝑅2 𝑅 =
𝜎𝑥 − 𝜎𝑦

2

2

+ 𝜏𝑥𝑦
2

𝜎𝑎𝑣𝑔 =
𝜎𝑥 + 𝜎𝑦

2

❖Mohr’s circle is a pictorial interpretation of the transformation equations for 

plane stress. The equations can be put into the follow format:

❖ These equations 

represent a circle 

center at (avg, 0) with 

radius R

❖ Each point on the 

circle represent the 

normal and shearing 

stresses on one plane 

through the stressed 

point



Procedure for analysis
1) Choose a set of x-y coordinate axes

2) Identify the stresses σx, σy and τxy = -τyx with proper sign

3) Draw a set of στ-coordinate axes with σ positive to the right and τ

upward as positive

4) Plot the point (σx, τxy)

5) Plot the point (σy, τyx) 

6) Join the 2 points to locate the center C and the radius R of Mohr’s circle

7) Draw the circle

8) Locate the principal stresses and p

9) Locate the maximum shearing stress and s

❖Normal stresses  are plotted as horizontal coordinates, 

with tensile stresses (positive) plotted to the right of the 

origin

❖ Shearing stresses  are plotted as vertical coordinates, with 

those tending to produce a clockwise rotation of the stress 

element plotted above the origin



Illustrative example 2

For the state of plane stress shown, use 

Mohr’s circle to determine the  

principal planes, principal stresses,  the 

maximum in plane shearing stress and 

the corresponding normal stress.

Determine the stress components 

exerted on the element obtained by 

rotating the given element 

counterclockwise through 30 degrees.

σx = -8MPa

τxy = 6MPa

σy = 12MPa

and τyx = -6MPa

(σx, τxy) = (-8, 6) MPa

(σy, τyx) = (12, -6) MPa



Illustrative example 2

A=(σx, τxy) = (-8, 6) MPa

B=(σy, τyx) = (12, -6) MPa

𝑅 = 10 2 + 62 = 11.66MPa

𝜎𝑎𝑣𝑒 =
𝜎𝑥 + 𝜎𝑦

2
=
−8 + 12

2
= 2MPa

(MPa)

(MPa)

A (-8, 6)

B(12, -6)

C(2, 0)

1 = 13.66MPa

2 = −9.66MPa

2p

𝑝 = 15.480 CCW

2s

𝑠 = 29.520 CW

𝑚𝑎𝑥 = 11.66MPa

𝑥′ = 2MPa



Illustrative example 2
Counterclockwise through 30 degrees or 2 = 600



Maximum shear stress
Consider the 3D element with three principal stresses max  int  min

(with one of them being 0)

❖ Case 1: min =0

❖Case 2: int =0

Viewing the element in 2D (i.e. in the y’z’, x’z’, and x’y’ planes) we can 

use Mohr’s circle to determine the maximum shear stress for each case:



General stress at a point

For a 3D element at a point, the specification of stresses on three mutually 

perpendicular planes is sufficient to completely describe the state of stresses

Shearing stresses  has 2 subscripts, the first subscript designates the normal to 

the plane on which the stress acts and the second designate the coordinate axis to 

which the stress is parallel.



General 3D stresses
In plane stress, the components of the state of stress depend on the orientation 

of the coordinate system in which they are expressed. Suppose that we know 

the components of stress at a point “p” in terms of a particular coordinate 

system xyz:

 =

𝑥 𝑥𝑦 𝑥𝑧
𝑦𝑥 𝑦 𝑦𝑧
𝑧𝑥 𝑧𝑦 𝑧

These components will generally have different values when expressed in 

terms of a coordinate system x’y’z’ having a different orientation. For any state 

of stress, at least one coordinate system x’y’z’ exists for which the state of 

stress is of the form
𝑥′ 𝑥′𝑦′ 𝑥′𝑧′

𝑦′𝑥′ 𝑦′ 𝑦′𝑧′

𝑧′𝑥′ 𝑧′𝑦′ 𝑧′
=

1 0 0
0 2 0
0 0 3

The axes x’, y’, z’ are called principal axes and σ1, σ2, and σ3 are the principal 

stresses



General 3D stresses
• The state of stress can be visualized by superimposing the Mohr’s circles

• Notice that if σ1 > σ2 > σ3, the absolute maximum shear stress is 

𝑚𝑎𝑥 =
1 − 3

2



Hooke’s law

➢ Assume the material is uniform throughout the body (i.e. 

homogeneous); has the same properties in all directions (i.e. isotropic 

material); and linearly elastic

➢ When loading within elastic limit, Hooke’s law states that stress is 

proportional to strain 

𝑥 = 𝐸ε𝑥

E = Modulus of elasticity (Young’s modulus) 

How does this apply in 3D?



Poisson’s ratio

➢ In all engineering materials, the elongation 

produced by an axial tensile force P in the 

direction of the force is accompanied by a 

contraction in any transverse direction

➢ The relationship between lateral and axial strain is 

called Poisson’s ratio 
Note: For homogeneous and isotropic material, εy = εz

 = −
ε𝑦
ε𝑥
= −

ε𝑧
ε𝑥

 = Poisson’s ratio

ε𝑥 =
𝑥

𝐸

ε𝑦 = ε𝑧 = −
𝑥

𝐸



Generalized Hooke’s law

ε𝑥 = +
𝑥

𝐸
−
𝑦

𝐸
−
𝑧

𝐸

ε𝑦 = +
𝑦

𝐸
−
𝑥

𝐸
−
𝑧

𝐸

ε𝑧 = +
𝑧

𝐸
−
𝑥

𝐸
−
𝑦

𝐸

These equations can be rewritten as:



Shearing strain

Hooke’s law for elastic shearing strain: 

𝑥𝑦 = 𝐺𝑥𝑦

G = Modulus of rigidity (Shear modulus) 

𝑦𝑧 = 𝐺𝑦𝑧 𝑧𝑥 = 𝐺𝑧𝑥

Shear modulus (G) is related to Young’s modulus 

(E) by Poisson’s ratio ():

𝐺 =
𝐸

2(1 + )



Example 1

Determine the stresses on the top element at B of a solid circular crank 

arm shown subjected to a downward applied force (P), where P = 2.25kN; 

LAB = 0.8m; LBC = 0.4m; R = 0.025m and determine the principal stresses

x

y

z

𝑀𝐴 = 𝑃 𝐿𝐴𝐵 = −1.8kNm (but along ത𝑘)

𝑇𝐴𝐵 = 𝑃 𝐿𝐵𝐶 = 900Nm (− ҧ𝑖)

𝐼 =
1

4
𝑅4 = 3.07(10−7) m4;

𝐽 =
1

2
𝑅4 = 6.14(10−7) m4;

The reactions at the wall will consist of a 

vertical shear force V = P = 2.25kN (); a 

bending moment (MA) and a torque (TAB)

For the top element at B: 

𝑥 = −
𝑀𝐴𝑅

𝐼
= 146.6MPa (top is in tension)

𝑥𝑦 =
𝑇𝐴𝐵𝑅

𝐽
= 36.6MPa



Example 1

A=(σx, τxy) = (146.6, 36.6) MPa

B=(σy, τyx) = (0, -36.6) MPa

𝑅 = 73.3 2 + 36.62 = 81.9MPa

𝜎𝑎𝑣𝑒 =
𝜎𝑥 + 𝜎𝑦

2
= 73.3MPa

1 = 155.2MPa

2 = −8.6MPa

𝑝 = 13.30 CW
𝑠 = 31.70 CCW

(MPa)

(MPa)

A (146.6, 36.6)

B(0, -36.6)

C(73.3, 0) p

s

𝑚𝑎𝑥 = 81.9MPa

𝑥′ = 73.3
MPa



Ancient Chinese mechanisms

A cylinder wheel Tong Che (筒車)

How would you analyse the 

stresses in the supporting beam?


