MEMS1028

Mechanical Design 1

Lecture 3 part 1

Load & stress analysis (Torsion & Combined
loadings)
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Objectives

Analyze torque and torsional shear in power
transmission bars, non-circular shafts,
closed thin-walled tubes and open thin-
walled sections

Analyze principal stresses and maximum
shear stresses in plane stress problems

Apply generalized 3D stresses and Hooke’s
law in engineering design



Power transmission

Shaft power transmission: P = T®

*» Angular frequency: w = 2rf (rad/s)
¢ Frequency f in Hz (rev/s)

s Power P (Watts)

s Torque T (Nm)

Solid shaft: polar moment of inertia Hollow shaft; polar moment of inertia

J=odt=2r J=5(ds—dt) =50 - ")
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Torque and torsion

For circular member:
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Before deformation

Circles remain
circular
Deformed

plane

If linear elastic,
Hooke’s law applies:

’ Undeformed T-—= G'Y

plane

Longitudinal
lines become
twisted

After deformation /‘\
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Radial lines /

remain straight X The angle of twist ¢(x) increases as.x increases.
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Circular shafts

Stress profiles:

Solid shaft: Hollow shaft;

J_ra__T J_mg—n) 5

ro 2 Tmax T, ) T,
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Non-circular shafts

*Cross-sections of

noncircular (non-axis-
symmetric) shafts are
distorted when subjected

Shape of
cross-section

to torsion
T TABLE Coefficients for
Rectangular Bars in Torsion
a/b C,4 C,
1.0 0.208 0.1406
1.2 0.219 0.1661
T 1.5 0.231 0.1958
Tmax = 19 2.0 0.246 0.229
ciab 2.5 0.258 0.249
3.0 0.267 0.263
4.0 0.282 0.281
O = L 50 | 0.291 0.291
c,ab3G 10.0 | 0312 0.312
00 0.333 0.333
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Closed thin-walled tubes

 For closed thin-wall tubes (i.e. r >>t) under
torsion; summing forces in the x-direction on AB:

Shear flow is constant
TAtA = TBtB = Tavet = q (Sheal’ ﬂOW)

For constant wall thickness t:

T TL,,
Tave = 574 0, = >
2tA,, 4G At

0, = angular twist (rad) per unit of length of the tube;
Torque T (Nm); G = shear modulus;

A, = area enclosed by the section median line;

L., = length of section median line



Open thin-walled sections
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*

0, = angular twist (rad) per unit of length of the tube;
Torque T (Nm); G = shear modulus;

Wall thickness = c;

L = length of median line
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lllustrative example 1

Tz =14kN - m

To=26kN - m
T, =6kN -m

Shaft BC is hollow with inner and outer diameters of 90 mm and 120 mm,
respectively. Shafts AB and CD are solid of diameter d. For the loading shown,
determine the required diameter d of shaft AB if the allowable shearing stress in

these shafts is 65 MPa.
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lllustrative example 1

Cut sections through shafts AB and BC and perform static equilibrium
analysis to find torque loadings

T, =6kN m z MX - 0 — (6) B TAB

TAB — 6kNm

Given r..,=65MPa:
_TIr _ Typr
Tmax = ;T T

2

r =38.9(1073)m or d =77.8mm



Combined loadings

N \\ - % Ashaft is normally designed to
%\ ;’ resist both torsion and bending
P N stress
~
P,

Transverse loading applied to a short
beam results in normal and shearing
stresses in transverse sections (which
cannot be ignored)

How should we consider these combinations of different stresses?
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Summary of basic loadings

(o) ©

Axial

O =

| o

Direct shear

Torsion

]
Bending My VaQ
It



Plane stress

» Many practical engineering problems can be
simplified by considering only three
Independent stresses — called plane stress on a
2D element (i.e. two parallel faces of the small
element shown are assumed to be free of stress)

» Example: state of plane stress occurs on the
free surface of a structural element or machine
component, i.e., at any point of the surface not
subjected to an external force




lllustrative combinations

Axial & torsion

Axial & bending
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lllustrative combinations

Torsion & bending

Stress elements

Left

Top

Bottom

Right

" Crank axis

Top element at B:

Left element at B:

0

0
xy |
0 n 0 _mis_
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Plane stress transformation

Given Plane Stress State: What are new stresses after
a rotation of 6?

Positive Sign Convention




Plane stress transformation

Oy + O 0, — O
Oxr = x2 A xz yc0529+rxysin29
o Ox T O Oy —
‘ﬁ__*_ Oy, = xz Y — xz ycosZB—TxysinZQ
Oy — Oy
Toyr =~ sin2 6 + 7y, cos2 6

» Tensile normal stresses are positive

» Shearing stress pointing in positive direction of axis defined by
second subscript is positive

» Positive angle measured counterclockwise from reference x-axis
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Principal stresses

» The transformation equations provides a means for finding
the normal and shearing stresses on different planes through
a point in the stressed element

» As the element is rotated through an angle 0, the normal and
the shearing stresses on different planes vary continuously

» For design purposes, critical stress at the point are usually
the maximum tensile (or compressive) and shearing stresses

» The principal stresses are the maximum normal stress o
and minimum normal stress o,

» How do we find the principal stresses and maximum
shearing stress?

max



Mohr's circle — plane stress

¢ Mohr’s circle is a pictorial interpretation of the transformation equations for
plane stress. The equations can be put into the follow format:

2 Ox t Oy _ Ox — Oy ? 2
[le - O'avg] + T,%,y, = R? Oqvg = ( 5 ) R = \/( 2 ) T Txy

¢+ These equations
represent a circle
center at (o, 0) with
radius R

¢+ Each point on the
circle represent the
normal and shearing
stresses on one plane

vQg!

through the stressed
point




1)
2)
3)

4)
5)
6)
/)
8)
9)

Procedure for analysis

Choose a set of x-y coordinate axes

Identify the stresses o,, 0, and z,, = -z, With proper sign
Draw a set of gz-coordinate axes with ¢ positive to the right and ¢
upward as positive

Plot the point (g, 7,,)

Plot the point (ay, 7,,)

Join the 2 points to locate the center C and the radius R of Mohr’s circle
Draw the circle

L ocate the principal stresses and 6,

Locate the maximum shearing stress and 6,

*» Normal stresses o are plotted as horizontal coordinates, o N\ 0=

with tensile stresses (positive) plotted to the right of the »————=

origin *_
¢ Shearing stresses r are plotted as vertical coordinates, with % ;

those tending to produce a clockwise rotation of the stress 1

element plotted above the origin !




lllustrative example 2

4 12 MPa
a— — For the state of plane stress shown, use
# “i o Mohr’s circle to determine the
__i. principal planes, principal stresses, the
maximum in plane shearing stress and
the corresponding normal stress.

o, = -8MPa Determine the stress components
Txy_:fz'\l/\'/lF’F<';1 exerted on the element obtained by
oy~ eV a rotating the given element

and z,, = -6MPa _
(0, 7)) = (-8, 6) MPa counterclockwise through 30 degrees.

(0, 7y5) = (12, -6) MPa



lllustrative example 2

212 MPa +t1(MPa) T..qac = 11.66MPa
» _ 2MPa
= 29.520 CW

—

% {7 & MPa

—_— & OMPa

)

A=(oy, 1,) = (-8, 6) MPa
B=(o,, 7,,) = (12, -6) MPa

Ox to, —8+12

O-Clve - 2 2

R =/(10)2 + 62 = 11.66MPa
o, = 13.66MPa 0, = 15.48° CCW

5, = —9.66MPa




lllustrative example 2

412 MPa Counterclockwise through 30 degrees or 26 = 60°

a (MPa)

\‘?_ﬁﬁ MPa ,
18.20 MPg~*
J

T (MPa)

g, =2 = 11.66 cos 29.04° = -8.20 MPa
T = 1166 sin 29.04° = 5.66 MPa
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Maximum shear stress

Consider the 3D element with three principal stresses o;,., = iyt = Omin
(with one of them being 0)

% Case 1: o, =0

% Case 2: ¢;,, =0

Viewing the element in 2D (i.e. Inthe y’z’, x’z’, and X’y’ planes) we can
use Mohr’s circle to determine the maximum shear stress for each case:

Omi
m
(T, -’)mu,\\ \
/ (Ty'z)max |\_ i : \—/ (T2)
Maximum in-plane (D) o
Absolute maximum shear stress x _\‘\\mux
shear stress Maximum in-plane and
T absolute maximum shear stress
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General stress at a point

For a 3D element at a point, the specification of stresses on three mutually
perpendicular planes is sufficient to completely describe the state of stresses

Shearing stresses t has 2 subscripts, the first subscript designates the normal to
the plane on which the stress acts and the second designate the coordinate axis to
which the stress is parallel.
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General 3D stresses

In plane stress, the components of the state of stress depend on the orientation
of the coordinate system in which they are expressed. Suppose that we know
the components of stress at a point “p” in terms of a particular coordinate

system xyz:
y y Ox Txy Txz
o] = |Tyx Oy Tyz
Tzx Tzy Oz

These components will generally have different values when expressed in
terms of a coordinate system x’y z’ having a different orientation. For any state
of stress, at least one coordinate system x ’y 'z ’exists for which the state of

stress i1s of the form
Gx’ T ! ’
'Cylxl I ’C ! 7' 62
’C ! X' T ! /

The axes x’, y’, 2’ are called principal axes and o,, 0,, and o, are the principal
stresses



General 3D stresses

» The state of stress can be visualized by superimposing the Mohr’s circles

» Notice that if 6, > 6, > 73, the absolute maximum shear stress is
| | 61 — O3
cmax 2
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Hooke’'s law

» Assume the material is uniform throughout the body (i.e.
homogeneous); has the same properties in all directions (i.e. isotropic
material); and linearly elastic

» When loading within elastic limit, Hooke’s law states that stress is
proportional to strain

Huplnn'
oy

E = Modulus of elasticity (Young’s modulus)

How does this apply in 3D?

| |« 0.2% offset
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Poisson’s ratio

ir =1 . . . -
» In all engineering materials, the elongation

T produced by an axial tensile force P in the

( W direction of the force is accompanied by a

/M\fﬂ _ f_k contraction in any transverse direction
~ » The relationship between lateral and axial strain is
called Poisson’s ratio v

. Note: For homogeneous and isotropic material, &, = &,

" e
Li:‘h._‘_ T, - -
N
L_EMH q.._““_“ ___f}f"-"l v _ Ey _ SZ
1"‘-..“ “"..H'J :l -_— T — T
_ O HE“BN Ex Ex
€, = E
. , .
Vo, v = Poisson’s ratio
E =€ = —



Generalized Hooke’s law

o) VO VO

X y VA

i _ _
. &=t T TF

G, VO, VO
1 y X Z
€, = +— — —
Q Y E E E
E /\ L9 VG, VO,
g, = — —
x ’ E E E

4 These equations can be rewritten as:
9y 1+e€
/‘\\/ o = E (= e + e, + o]
Wy V" W//l . 6/ x {1 + [.-"]{1 - EF} X ] E
: E
" , = | —v)e, + vie. + &,
/ \ o ﬂ-.u {l _I_ I.-l']{rl — Ey} [{: F]EJ I.-"{E_ E_-., ]]

/ \’/\1~+ €. E
: o, = T Ey][“ —v)e. tv(ie, + £, )]



Shearing strain

Hooke’s law for elastic shearing strain:

Ty = Gny Ty, = G’sz Tox — Gsz

G = Modulus of rigidity (Shear modulus)

Shear modulus (G) is related to Young’s modulus
(E) by Poisson’s ratio (Vv):

E

G=2(1+V)




Example 1

Determine the stresses on the top element at B of a solid circular crank
arm shown subjected to a downward applied force (P), where P = 2.25kN;
L,g = 0.8m; Lge = 0.4m; R = 0.025m and determine the principal stresses

The reactions at the wall will consist of a
vertical shear force V=P = 2.25kN (1): a
bending moment (M,) and a torque (T,g)

M, = P(Lsg) = —1.8kNm (but along k)

Crank am Ty = P(Lpc) = 900Nm (—1)
C [ ™ Crank axis
BC For the top element at B:
1 - . . . .
I =-nR* =3.07(1077) m¥; , = — 248 — 146.6MPa (top is in tension)
I

1 -
J =nR* = 6.14(107") m*; Ty = TA]BR = 36.6MPa




R = /(73.3)% + 36.62 = 81.9MPa

° 1 {(MPa)
36.6MPa < "
146;6?\'1Pa 146.6MPa :
—— " 36.6uPa i
0 $( ‘
A=(o,, 7,y) = (146.6, 36.6) MPa av G(M]Da)
B=(o,, 7,,) = (0, -36.6) MPa :
O, + O |
O e = — - Y = 73.3MPa !

—_ — 0
oy =1552MPa 0, =13.3°CW  _gigvpa 0 =31.70CcCW

G, = —8.6MPa G, 73 31\/[Pa
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Ancient Chinese mechanisms

A cylinder wheel Tong Che (f&5E)

K -~ <s-  How would you analyse the
: stresses in the supporting beam?
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