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Mechanical Design 1

Lecture 2
Load & stress analysis (Beams)
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Objectives

Construct shear force & bending moment
diagrams for different beam loadings and
support conditions

Analyze the flexure stress & transverse
shear in beams

Design of prismatic beams and curved
beams based on given specifications

Understand the limitations of the design



Introduction

« A beam is a common structural member subjected to transverse loads to
withstand significant bending effects as oppose to twisting or axial
deformation

« When a beam is loaded by forces or couples, stresses and strains are created
throughout the interior of the beam

« To determine these stresses and strains, the internal forces and internal
couples that act on the cross sections of the beam must be found
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Shear force & bending moment

For small O: 18
g 1 M (d*y/d/x*) " ax?
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» Deflection=y
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» Distributed load = w
» Shear force =V 4
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» Bending moment = M = el =—w(x)



Shear force & bending moment

« Vand M at a point are determined by passing
a section through the beam and applying an
equilibrium analysis on the beam portions

» The process can be tedious and time-
consuming when several intervals and several
sets of matching conditions are needed

* The problem is that the shear and moment
could only be rarely described by a single
analytical function

« Remember the sign conventions for Vand M :




lllustrative example 1

Singularity functions can help
reduce the labour by making
V or M represented by a
single analytical function for
the entire length of the beam
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Singularity functions

Function Graph of f, (x) Meaning
Concentrated (s (=) =0 xa A singularity function is
(unit doublet) ‘ M@ E e expressed as (x — a)" where
(‘* R T any integer (positive or
p—— negative) including zero,
Concentrated b E:: ) :; - e and a is a constant equal to
(unit impulsc) ‘ 1 [ @t ae— e the value of x at the initial

T I_ooundary of a specific
Interval along the beam

gix)

Ramp {x —a) {(x — ﬂ_}l _ {{} X jC' i) ‘ ﬂ' W
X —d X =0 .
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_ ix—a® e U x=a . .
Unit step - ay= {1 x=a (note: the singularity
‘ i [ = e = e — oy functions are for loading Q)
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"W. H. Macaulay, “Note on the deflection of beams” Messenger of Mathematics, vol. 48, pp. 129-130, 1919,
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lllustrative example 2
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lllustrative example 2
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Normal stress in beams

) = Normal stress due to bending

M MC M
Normal stress ¢ = —Ty lo <

maxl - I

| = second-area moment about z-axis
B M S = I/c = section modulus

| The maximum internal bending moment M in the
beam can be found from the bending moment diagram

Max internal bending moment, (Nm) Max distance from
Max bending . l\_AMmaXC/ NA to outer fiber (m)
stress, Pa o Iz - Y Moment of inertia (m*)

Oringeneral: |opaxl ==
Sz
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Beam section properties

.

= |
Properties of Rolled-Steel Shapes K Note the
- (SI Units) ¢ x—4-x changein
apes {1, .
(American Standard Shapes) Section modulus L S the x axis
y definition
. . | S -
Moment of inertia \ - 5 _
- \ Radius of gyration
Flange \
web \ is X-X Axis Y-Y
Th‘ck' Thhk' N N
Area Depth | Width ness | ness |/, S, r l 55' r,

Designationt A, mm? dmm | b,mm t,mm | £, mm | 10°mm* 10°mm* mm 10*mm* 10°mm* mm
S610 X 180 22900 622 204 277 | 203 1320 4240 240 | 349 341 39.0
158 20100 622 200 27.7 15.7 1230 3950 247 |325 321 39.9
149 19000 610 184 22.1 18.9 995 3260 229 |20.2 215 323
134 17100 610 181 22.1 15.9 938 3080 234 | 19.0 206 33.0
119 15200 610 178 22.1 12.7 878 2880 240 |17.9 198 34.0
S510 X 143 18200 516 183 234 20.3 700 2710 196 |21.3 228 339
128 16400 516 179 234 16.8 658 2550 200 19.7 216 344
112 14200 508 162 20.2 16.1 530 2090 193 12.6 152 29.5
98.3 12500 508 159 20.2 12.8 495 1950 199 |11.8 145 30.4
S460 X 104 13300 457 159 17.6 18.1 385 1685 170 | 104 127 21.5
81.4 10400 457 152 17.6 11.7 333 1460 179 | 8.83 113 28.8
S380 X 74 9500 381 143 15.6 14.0 201 1060 145 | 6.65 90.8 26.1
64 8150 381 140 15.8 10.4 185 971 151 6.15 85.7 27.1
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Two-plane bending

Quite often, in mechanical design, bending occurs in both xy and xz planes
Considering cross sections with one or two planes of symmetry only, the bending
stresses are given by

\\ \\ \L.w\ = Msin @

.": = Mcos 0
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Asymmetrical cross section

«* For non-symmetric cross-sections we must find new principal axes, l,and I,
Refer to notes (in BB) on how to find the principal axis for non-symmetric

Ccross-sections
s The moments must also be resolved to about the principal axis

s Apply the two-plane analysis about the principal axes

Example of unsymmetrical cross-section:

-"

< New principal y axis

= . :
'{\\b/ --------- New principal z axis
M



Shear stress In beams

In

1: g 1 Meutral axes, Centrondal axis Shear StreSS Tave — Q
RN It
é ‘ t = beam thickness
- Q = [ ydA = moment of area above t about N.A.

l'ension

The maximum internal shear force V in the beam can be found from the shear

force diag

ram. To find Q, Integration may not be needed for simple shapes

» Q is taken about the NA for the entire cross section

| * The determination of the shear stress involved a cut

area (e.g. bottom area A’ below the cut)
» To find Q for simple shapes, we need the cut area about
distance between the NA and centroid of cut area (i.e.

distance y'), i.e. Q=yA




lllustrative example 3

Determine the first moment of area Q for the areas indicated by the shaded areas
“a” and “b” (all dimensions in mm)

o

o

2

3
3 .
2 5 5 6
(\ (‘ - 1\\
N.A % '»
1 5 — = 3 B 1] : \ 2
6 i 6 . 3

First, locate the neutral axis for the entire area:

y, = DEXOHCENEXE) _ 3mm from base
2X6+2X6

= (5—-1.5)[3 X 2] = 21mm3;
Qo ={ L ] Where will max Q occur?
Q, = (3—1.5/2)[1.5 x 6] = 20.25mms;
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Shear stress - common sections

Beam Shape Formula Beam Shape Formula
=T Tawe = ; Tmax — ﬂ = Tawc™ EV Tmax — g
2A A
_1
Rectangular Hollow, thin-walled round

B |q_ Tu\-n;: = Iv T, e ﬂ J"l_w;-_,_ E Tmu:n‘. == V
max 3 A 3 chb
|

) = — Structural I beam (thin-walled)
Circular
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Shear formula accuracy

How accurate Is the shear stress formula?

I.' — T |
L 0
l
I =F o [
d
Great 3% error | 2% error [00% error, worst casc

f1s small d=21 d=1 4d= 1
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Example 1

A steel wide-flange beam has the dimensions shown. If it is subjected to a
shear of V = 80kN. Plot the shear-stress distribution over the beam’s cross-
sectional area

20 mm

Flanges




Example 1

I = [1—12 (0.015)(0.2)3] + 2 [1—12 (0.3)(0.02)3 + 0.3(0.02)(0.11)2]

= 155.6(10~°)m*;

Due to symmetry, only shear stresses at points B’, B, and C have to be found

20 mm

t

B’ belongs to the
flange; B belongs
to the web (B’ and
B are considered
to be at the flange-
web junction with

Qp-=Qg but tz-#t5)



Example 1

00em Q= QB, = )-,'A' = 0.11(0.3)(0.02) = 0.66(1073)m3;

.3 m—-{
/t : (20 | | For point B’, t;.=0.3m and
A “I }
N 17 0.1(10mA o VQs _ (80000)[066(107%)] _ 4 1ayin
B’ Itg, 155.6(1076)(0.3) '
| | For point B, t;=0.015m and
__ VQp _ (80000)[0.66(1073)]
BT Tip T 155.6(10-9)(0.015) 22.6MPa
s 43'012"‘ For point C, t-=0.015m and
1 |
4 ohism—— miow | Qc = z 7'A" = 0.11(0.3)(0.02) +[0.05](0.015)(0.1)
N N J’ A
c Qc = 0.735(1073)m3;

| | _ VQc¢ _ (80000)[0.735(1073)]

T T 155.6(10-6)(0.015) 25.2MPa




Example 1

20 mm B’\ Tg = 1.13 MPa

b AN,
‘ =22.6 MP
IOO&mm/ B/ B a

IOO‘mm
mm/ C/_.
I

\TC=252MPa

)

22.6 MPa

g 113 MPa

—_,— e e o ——

Where will max t occur?

Where will sudden changes in t occur?



Shear flow

V
qz'l't:TQ

¢ Shear flow g (N/m) is a measure of the shear force per unit length along the
longitudinal axis of the beam

¢ It is used to determine the shear force developed in fasteners and glue that
hold various segments of the beam together

¢+ Value of g changes over the cross section, since Q will be different for each
area segment

¢ Shear flow will always act parallel to the walls of the member, since section
on which q is calculated is taken perpendicular to the wall

Adjacent [ — tf—
¢ P elements — - /L

j=== | &




Shear flow In built-up members

A’ A\,

- { . = — = |
> )—}'
N A

Shear flow q will be resisted

Shear flow q will be resisted

by a single fastener by two fasteners

- ‘3‘11

To design the fasteners, we need to know the shear force to
be resisted by the fastener along the member’s length

2V,
q=——




Prismatic beam design

s Beams are structural members designed to support loads applied perpendicular
to the longitudinal axis

¢ With beams there are two stresses to deal with normal stress, o, and shear
stress, T

% Bending stress o Is generally the critical stress (i.e. for long beams where L/h

>10). Hence, beam design usually involves finding the V., and M., from the

shear force and bending moment diagrams and then using M, to determine

the material and design the beam cross section based on o,

l | < TheV,., isthen used to ensure that the t < 1,
' ¢ If there are fasteners, then fastener strength (or size)
will need to be determined using shear flow g

(= o]

-

U
|

-
. /
il

Shear stress Bending stress o
& Welded

1
M - —= .
I e = (e — ]

—_— s | ¥ distribution distribution
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Prismatic beam design




Curved Beams

For curved beams, we assumes that the cross-sectional area is constant

The cross section has an axis of symmetry in the plane of bending

The location of the neutral axis with respect to the center of curvature O Is

given by r,:
A

Fra !* -L’.I'II_A
| F

Stress distribution
IS given by

0o =
Ae(r, — y)

Critical stress occurs at
inner and outer surfaces:

Mc; Mc,
— o =

o. = =
Aer; °  Aer,

l

Centroidal

axis

¥
i

|
b
[ .
s

0
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Curved Beams

A + h
r.o=r 4+ —

T ¢ [ i 2
il : h

r Fon =
l T T ’ In(r,/r;)

F o
R ERN
kb, > h b, + 2b,

b, — b, + [(byr, — b,r;) /h] In(r,/r;)

T / \ F Tt I b,
1 A
h J’ r.lr =

7 2
b=b,> b,cy + 2b,cicx + b,

1 b n 2(b,cy + bicy)
€2 i o z;}r'l’.'] + bﬂ{'g
l_ ‘[ Fa & bIn[(r, + ¢} /r] + b, In[r,/(r, + )]

-
~
. T 3= -
-
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Curved Beams

r-=rn+R/
R -
1 |
7!
b = — —
" fa l 2ir, — '\rﬁ}
i
fe—t —=] | - 1 .
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1] SR
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Example 2

A crane hook having an approximate
DL trapezoidal cross-section is shown (all
%Eﬂ dimensions are in mm). It is made of plain
' carbon 45C8 steel (S,, = 380MPa) and the
factor of safety is 3.5; Determine the load
carrying capacity of the hook

The permissible tensile strength is

_ Syt _ .
S 108.57MPa;

Use known cross section to determine r, and r,, given r;=50mm; b,=90mm);
b,=30mm; h=120mm
A

= 100mm: and 1 = e brromboro /ity ry 0218
Note: ¢;=(89.18 - 50) = 39.18mm
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Example 2

Given r;=50mm; b;=90mm; b,=30mm; h=120mm;
Founde = 108.57MPa;

r. = 100mm and r;, = 89.18mm; ¢,=39.18mm
Eccentricity e = r, — 1, =10.82mm

Area A =~ (b, + b)h =7200mm2;

Direct tensile stress due to P is
c == =139P(10")MPa;

Critical tensile stress due to bending occur at inner
fibre: o,; = —L = 2% = 10.06P(10~4)MPa;

Aer; Aer;

Using the principle of superposition: c; + 6p; = Gy OF
11.45P(10~%*) = 108.57; Hence P = 94.8kN



