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Mechanical Design 1

Lecture 13

Design codes and misc



Objectives

 Explain the concept of design codes

 Apply ASME BPVC.VIII.1.2019 in the design 
of simple pressure vessels

 Design leaf springs based on deflections and 
energy principles

 Design of simple hinges based on angular 
deflections and stresses

 Explain Miner’s rule in the analysis of 
varying fluctuating stresses



Introduction

❖ Safety, reliability and operation efficiency can be achieved by:

 Proper design and construction

 Proper maintenance and inspection

 Proper operation

❖ Engineering standards ensure safety, reliability and operational efficiency 

in machine design and mechanical production

❖ Engineering standards have been established for many industry equipment 

such as pressure vessels (example: many countries had generated design & 

construction codes for pressure vessels)



Standards – pressure vessels



Thin cylindrical shells

A simplified equation was developed by the ASME Code, VIII-1 for determining 

the required thickness of a cylinder for longitudinal joints subjected to internal 

pressure when the thickness does not exceed one‐half of the inside radius, or 

internal pressure P does not exceed 0.385SE (i.e. t  R/2 or P  0.385SE):

𝑡 =
𝑃𝑅

𝑆𝐸 − 0.6𝑃
Where t = required thickness

E = joint efficiency factor (For welded vessels, use the efficiency in UW-12)

P = internal pressure

R = inside radius

S = allowable stress

Note:

𝑃 =
𝑆𝐸𝑡

𝑅 + 0.6𝑡





Thin cylindrical shells

A simplified equation was developed by the ASME Code, VIII-1 for determining 

the required thickness of a cylinder for circumferential joints subjected to 

internal pressure when the thickness does not exceed one‐half of the inside 

radius, or internal pressure P does not exceed 1.25SE (i.e. t  R/2 or P  1.25SE):

𝑡 =
𝑃𝑅

2𝑆𝐸 + 0.4𝑃
Where t = required thickness

E = joint efficiency factor (For welded vessels, use the efficiency in UW-12)

P = internal pressure

R = inside radius

S = allowable stress

Note:

𝑃 =
2𝑆𝐸𝑡

𝑅 − 0.4𝑡



Thin spherical shells

A simplified equation was developed by the ASME Code, VIII-1 for determining 

the required thickness of a spherical shells subjected to internal pressure when 

the thickness does not exceed 0.356 of the inside radius, or internal pressure P

does not exceed 1.25SE (i.e. t  0.356R or P  0.665SE):

𝑡 =
𝑃𝑅

2𝑆𝐸 − 0.2𝑃
Where t = required thickness

E = joint efficiency factor (For welded vessels, use the efficiency in UW-12)

P = internal pressure

R = inside radius

S = allowable stress

Note:

𝑃 =
2𝑆𝐸𝑡

𝑅 + 0.2𝑡



Thick cylindrical shells

When the thickness of the cylindrical shell under internal design pressure 

exceeds one‐half of the inside radius, or when internal pressure P exceeds 

0.385SE, the following equations shall apply for longitudinal joints (i.e. t > R/2 

or P > 0.385SE):

𝑡 = 𝑅 𝑍 Τ1 2 − 1 = 𝑅𝑜
𝑍 ൗ1 2−1

𝑍 ൗ1 2

Where 𝑍 Τ1 2 =
𝑃

𝑆𝐸
+ 1

𝑃 = 𝑆𝐸 𝑍 − 1
Where

𝑍 = 𝑅 +
𝑡

𝑅

2

=
𝑅𝑜
𝑅

2

=
𝑅𝑜

𝑅𝑜 − 𝑡

2



Thick cylindrical shells

When the thickness of the cylindrical shell under internal design pressure 

exceeds one‐half of the inside radius, or when internal pressure P

exceeds 1.25SE, the following equations shall apply for circumferential 

joints (i.e. t > R/2 or P > 1.25SE):

𝑡 = 𝑅 exp
𝑃

𝑆𝐸
− 1 = 𝑅𝑜 1 − exp

−𝑃

𝑆𝐸

Where Ro = outside radius and

𝑃 = 𝑆𝐸 ln
𝑅 + 𝑡

𝑅
= 𝑆𝐸 ln

𝑅𝑜
𝑅𝑜 − 𝑡



Thick spherical shells

When the thickness of the spherical shell under internal design pressure 

exceeds 0.365 of the inside radius, or when internal pressure P exceeds 

0.665SE, the following equations shall apply (i.e. t > 0.356R or P > 0.665SE):

𝑡 = 𝑅 exp
0.5𝑃

𝑆𝐸
− 1 = 𝑅𝑜 1 − exp

−0.5𝑃

𝑆𝐸

Where Ro = outside radius and

𝑃 = 2𝑆𝐸 ln
𝑅 + 𝑡

𝑅
= 2𝑆𝐸 ln

𝑅𝑜
𝑅𝑜 − 𝑡



Formed heads

❖ A large variety of end closures and transition sections are available

❖ Which configuration to use depends on many factors such as method of 

forming, material cost, and space restrictions



Hemispherical Heads

❖ Heads are welded to ends of the vessels before operation

❖ Heads are normally made from the same material as the shell

❖ The thickness of a hemispherical head is given by:

𝑡 =
𝑃𝑅

2𝑆𝐸 − 0.2𝑃
Where t = required thickness

E = joint efficiency

P = internal pressure

R = inside radius

S = allowable stress

Note:

𝑃 =
2𝑆𝐸𝑡

𝑅 + 0.2𝑡



Ellipsoidal heads
❖ The thickness of an ASME ellipsoidal head is given by:

𝑡 =
𝑃𝐷

2𝑆𝐸 − 0.2𝑃
where t = required thickness

E = joint efficiency

P = internal pressure

D = inside diameter

S = allowable stress

For theASME ellipsoidal head
𝑎

𝑏
= 2

where a and b are the semi-major and semi-minor axes of the ellipse

Note:

𝑃 =
2𝑆𝐸𝑡

𝐷 + 0.2𝑡



Torispherical heads

❖ The thickness of an ASME torishperical head is given by:

𝑡 =
0.885𝑃𝐿

𝑆𝐸 − 0.1𝑃
where t = required thickness

E = joint efficiency

P = internal pressure

S = allowable stress

L = spherical cross radius

For the ASME torispherical head, the knuckle radius r = 0.06L

Note: 

𝑃 =
𝑆𝐸𝑡

0.885𝐿 + 0.1𝑡



Illustrative example 1

A hemispherical head having an inside radius of 380mm is subjected to an 

internal pressure of 28MPa. This allowable stress is 160MPa. What is the 

required thickness using the shell theory and the ASME code (assume 

joint efficiency, E = 1)?

For spherical vessel, the shell theory for stress: 1 = 2 =
𝑝𝑟

2𝑡

𝑡 =
𝑝𝑟

2𝑎𝑙𝑙
=

28(106)(0,38)

2(160)(106)
= 33.25mm

Note: 𝑝 = 28 < 0.385𝑆𝐸 = 61.6 MPa;

Using ASME code: 𝑡 =
𝑃𝑅

2𝑆𝐸−0.2𝑃
=

28(106)(0,38)

2 160 106 −0.2(28)(106)
= 33.8mm

The ASME estimate is conservative in this case



Flat heads & covers 

❖ Flat heads and covers are used widely as closures to pressure vessels

❖ They are either integrally formed with the shell, or may be attached by 

bolts

❖ A stayed head has stay rods/bolts attached to the head to prevent it from 

deforming or failing from either internal or external pressure

❖ An unstayed head resists forces solely on its own strength

❖ The minimum required thickness of circular, unstayed flat circular heads 

and covers without bolting shall be calculated by: 𝑡 = 𝑑 Τ𝐶𝑃 𝑆𝐸
where d = effective diameter of head,

E = joint efficiency;

P = internal pressure;

S = allowable stress;

C = 0.10 through 0.33, depending upon the construction details at the head-

to-shell juncture





Illustrative example 2

A circular plate of diameter 1m, forms the cover for a cylindrical pressure vessel 

subjected to a pressure of 0.04MPa. Determine the thickness of the head if the 

allowable stress in the material is limited to 120MPa (with Poisson ratio 0.3) 

assuming unstayed cover using ASME code with C=0.33 and E=1. Compare 

findings with the thickness obtained by assuming the plate is simply supported 

by the edges. For a simply supported circular plate of radius R and thickness t

subjected to uniform pressure P, the maximum stress is given by

𝑚𝑎𝑥 =
3(3 + )

8

𝑃𝑅2

𝑡2

Assuming simply supported plate:

𝑚𝑎𝑥 =
3(3 + )

8

𝑃𝑅2

𝑡2
=
3(3 + 0.3)

8

0.04(106)(0.52)

𝑡2
= 120(106)

𝑡 = 10.16mm 

Using C=0.33 in ASME code: 𝑡 = 𝑑 Τ𝐶𝑃 𝑆𝐸 = 10.49mm



Bolted flange joint

❖ The flange is a seat for the gasket

❖ The cover and the gasket is secured 

to the flange by a number of bolts

❖ The preload on the bolts must be 

sufficiently large to seat the gasket 

but not excessive enough to crush it

❖ The bolts is designed to contain the 

preload pressure required to prevent 

leakage through the gasket

❖ The flange region is designed to 

resist bending that occurs in the 

spacing between the bolt locations



Bolted flange joint

❖ In the absence of fluid pressure, the required bolt load to seat the gasket 

is given by

𝑊𝑚2 = 𝑏𝐺𝑦

where b = effective gasket seating width;

𝑊𝑚2 = gasket seating load (without fluid pressure);

G = minimum gasket diameter;

and y =  gasket seating stress (dependent on the gasket type and material);

❖ In the presence of fluid pressure, the required bolt load to seat the gasket 

is given by

𝑊𝑚1 =


4
𝐺2𝑝 + 2𝑏𝐺𝑚𝑝

where p = design pressure;

𝑊𝑚1 = gasket seating load (with fluid pressure);

and m = gasket factor (dependent on the gasket type and material);



Bolted flange joint

❖ The chosen bolt material should be compatible with the flange 

material

❖ (i.e. no chemical reaction between the materials)

❖ The total minimum required cross-sectional area of the bolts should be 

the greater of the following areas:

𝑊𝑚2

𝑆𝑎
and 

𝑊𝑚1

𝑆𝑏

Sa = allowable bolt stress at room temperature

Sb = allowable bolt stress at operating temperature



Bolted flange joint

❖ To determine the thickness of the blind flanges, we must compare the 

thickness under 2 conditions and select the larger value;

▪ The internal pressure equals zero, and the only load is the gasket 

seating load Wa at ambient temperature with the allowable tensile 

stress of Sa:

𝑡 = 𝑑 1.9 Τ𝑊𝑎ℎ𝐺 𝑆𝑎𝐸𝑑
3

▪ The internal pressure P and gasket loading are applied with Wm1 at 

operating temperature with an allowable tensile stress of Sb:

𝑡 = 𝑑 0.3 Τ𝑃 𝑆𝑏𝐸 + 1.9 Τ𝑊𝑚1ℎ𝐺 𝑆𝑏𝐸𝑑
3



Openings
◼ Three main types: 

ObroundCircular Elliptical



Openings

❖ When the long dimension of an elliptical or obround opening exceeds 

twice the short dimensions, the reinforcement across the short 

dimensions shall be increased as necessary to provide against 

excessive distortion due to twisting moment

❖ For shells with inside diameter D of 60 in. (1520mm) and less, the 

opening shall not exceed 0.5D or 20 in. (510 mm) 

❖ For shells with inside diameter D over 60 in. (1520mm), the opening 

shall not exceed 0.3D or 40 in. (1020 mm) 

❖ When these size limits are exceeded, there are addition rules to be met 

These additional rules may require some reinforcement to be placed 

closer to the opening



Reinforcement of openings

❖ Add material around opening by thickening the shell

❖ Most reinforcement provided on the outside of the vessel

❖ The boundary limit for the effective reinforcement is the distance of 

where stress die out significantly

Hole in cylindrical shell Hole in spherical shell



Reinforcement of openings

When the size of the opening is within the defined limits, the limits of 

reinforcement parallel to the shell surface measured on each side of the 

center line is the larger of (1) d or (2) Ts + Tn + 0.5d

where “d” is diameter of circular opening; Ts = nominal thickness of 

shell; Tn = nominal thickness of nozzle wall

The limit of reinforcement perpendicular or 

normal to the shell measured either inward 

or outward from the surface of the shell is 

the smaller of (1) 2.5Ts or (2) 2.5Tn



Area of reinforcement

❖ For circular opening, total required cross-sectional area of reinforcement in 

the plane of consideration is 𝐴 = 𝑑𝑡𝑟
❖ Available Area of Reinforcement for circular opening:

a) Reinforcement area available in the shell wall is A1 = (2d − d)(Ts − tr) 

b) Reinforcement area available in the nozzle wall is A2 = (5Ts)(Tn − trn) 

c) Reinforcement area available in the inward nozzle is A3 = (5Ts)(Tn) 

where “d” is diameter of circular opening; 

Ts = nominal thickness of shell; 

Tn = nominal thickness of nozzle wall;

“tr” is the minimum required thickness of a seamless shell based on the 

circumferential stress; 

“trn” is required thickness of a seamless nozzle wall; 

❖ For more complex reinforcement, please refer to the full ASME 

BPVC.VIII.1.2019



Spring rates

Beam deflections can be used as spring: e.g. diving board

See Appendix A-9

Assume F-y is linear at L At L: spring rate is

𝑘 =
𝐹

𝑦
=
3𝐸𝐼

𝐿3



Cantilever beam

Consider a beam with cross-section b h:

❖ Along the beam, bending moment varies for 0 ≤ 𝑥 ≤ 𝐿: 

𝑀 = 𝑃𝑥

❖ At each section, max flexure stress occurs at a section top and bottom

❖ Moment of inertia 𝐼 =
1

12
𝑏ℎ3

❖ Section modulus  𝑍 =
𝐼

𝑐
=

Τ𝑏ℎ3 12

Τℎ 2
=

𝑏ℎ2

6

❖ Given distance x of a generic end cross-section, the value of σmax at that 

section will be

 =
𝑀𝑐

𝐼
=
𝑀

𝑍
=
6𝑃𝑥

𝑏ℎ2

❖ Stress along the beam is not constant



Cantilever beam

 =
6𝑃𝑥

𝑏ℎ2

To keep the stress σ constant along the beam, there are two possibilities:

• Keep h constant and change b

• Keep b constant and change h



Cantilever beam

 =
6𝑃𝑥

𝑏ℎ2

❖ Investigate keeping b constant and change h so that σ remain constant

ℎ2 =
6𝑃𝑥

𝑏𝜎
❖ Height h must vary as follow:



Cantilever beam

 =
6𝑃𝑥

𝑏ℎ2

❖ Investigate keeping h constant and change b so that σ remain constant

𝑏 =
6𝑃𝑥

𝜎ℎ2

• Note that width b varies linearly with x

• By specifying 𝑏 = 𝑏0 at x = 0 and b = 0 at x = L, we get a triangular 

profile



Leaf spring

❖ Constant thickness beam is easier to manufacture

❖ To make it more compact, it is usually manufactured as an equivalent 

multiple leaf spring, as shown

❖ The leaves which are cut from the original triangle are called graduated 

leaves



Leaf spring

❖ Cantilever type leaf springs (or flat springs) are made out of flat plates

❖ Advantage of leaf spring is that the ends of the spring may be guided 

along a definite path as it deflects to act as a structural member in 

addition to energy absorbing device

 =
6𝑃𝐿

𝑛𝑏ℎ2

 =
6𝑃𝐿3

𝐸𝑛𝑏ℎ3

𝑘 =
𝐸𝑛𝑏ℎ3

6𝐿3

◼ Number of leaves = n



Leaf spring

❖ The same concept can also be applied to the simply supported beam

 =
3𝑃𝐿

2𝑛𝑏ℎ2

 =
3𝑃𝐿3

8𝐸𝑛𝑏ℎ3

𝑘 =
8𝐸𝑛𝑏ℎ3

3𝐿3

◼ Number of leaves = n



Elliptic leaf spring

Quarter-elliptic

◼  =
6𝑃𝐿

𝑏ℎ2

◼  =
6𝑃𝐿3

𝐸𝑏ℎ3

Semi-elliptic

◼  =
6𝑃𝐿

𝑏ℎ2

◼  =
6𝑃𝐿3

𝐸𝑏ℎ3

Full-elliptic

◼  =
6𝑃𝐿

𝑏ℎ2

◼  =
12𝑃𝐿3

𝐸𝑏ℎ3



Rotary hinge

For 0  x  L:    𝐸𝐼
𝑑𝑦

𝑑𝑥
= 𝐹𝐿𝑥 − 𝐹

𝑥2

2
and     𝐸𝐼𝑦 = 𝐹𝐿

𝑥2

2
− 𝐹

𝑥3

6

At x = L:    𝐸𝐼
𝑑𝑦

𝑑𝑥
= 𝐸𝐼 = 𝐹

𝐿2

2
and     𝐸𝐼 = 𝐹

𝐿3

3

 =
𝐹𝐿2

2𝐸𝐼
and  =

𝐹𝐿3

3𝐸𝐼

View as 2 types of springs:

𝑘 =
𝐹


=

2𝐸𝐼

𝐿2
and 𝑘 =

𝐹


=

3𝐸𝐼

𝐿3

𝑠 ≈



=
2𝐿

3



Notch hinge

Circular hinge Leaf hingeElliptic  hinge

A flexure hinge is a thin member that provides the relative rotation between two 

adjacent rigid members through flexing (bending), as shown

❖ Flexure hinges are used in compliant mechanisms for macro- and microscale 

applications

❖ Common notch hinges include the following:



Leaf hinge

Angular stiffness 𝑘 =
𝑀


=

𝐸𝐼

2𝑎𝑥

Design thickness  𝑡 =
4𝑎𝑥

𝐸

𝑆𝑦

𝑚𝑎𝑥

❖ M = bending moment;

❖ = angular deflection;

❖ E = elastic modulus;

❖ I = second moment of area about neutral axis;

❖ 2ax = length of the hinge;

❖ and Sy = yield stress

Leaf hinge



Circular hinge

Circular hinge

If web thickness is relatively small in comparison 

to the radius of the notch, reasonable estimates can 

be calculated from the approximate equations:

Angular stiffness 𝑘 =
𝑀


=

2𝐸𝑏𝑡 Τ5 2

9𝑅 Τ1 2

Stress  = 1 +  Τ9 20 6𝑀

𝑏𝑡2

❖ M = bending moment;

❖ = angular deflection;

❖ E = elastic modulus;

❖ b = width of the web;

❖ R = notch radius; t = web thickness

❖ and  =
𝑡

2𝑅



Applications

Load cell for force measurement

Maintain contact between brush 

and commutator in electric motor



Miner’s rule

❖ A common situation is to load at 1 for n1 cycles, then at 2 for n2 

cycles, etc.

❖ The cycles at each stress level contributes to the fatigue damage

❖ Defining D as the accumulated damage:

𝐷 =෍
𝑛𝑖
𝑁𝑖

• where ni is the number of cycles at stress level i applied to the 

specimen 

• Ni is the life in number of cycles at stress level  from the S–N 

curve

❖ When D  1, failure ensues


