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Lecture 12

Fatigue failure (Fluctuating simple loads)



Objectives

 Apply common fatigue failure criteria in 
engineering design involving fluctuating 
simple loads 

 Analyze the fatigue failure in engineering 
design involving combination of loading 
modes



Fluctuating stresses
❖ In the rotating-beam test, the specimen is subjected to fully reversible 

stress (i.e. 𝜎max = 𝜎min with mean stress 𝜎𝑚 = 0
❖ A general fluctuating stress can be viewed as a reversing stress with 

amplitude 𝜎𝑎 about a steady state mean stress 𝜎𝑚 as shown 

Mean stress:   m =
max+min

2

Stress amplitude:   𝜎𝑎 =
max−min

2

For the same stress amplitude, the 

mean stress can affect the fatigue life



Fatigue failure

❖ Experimental data on normalized plot of 𝜎𝑎 vs 𝜎𝑚
❖ If is 𝜎𝑚 compressive, then the design is safe if 𝜎𝑎 is less than 𝑆𝑒, as long as 

the maximum stress 𝜎𝑚 ≤ 𝑆𝑦𝑐
❖ To distinguish the fluctuating stress from the constant stress in the failure 

criteria, the y-axis is used for the 𝜎𝑎 and the x-axis for 𝜎𝑚 as shown



Fatigue failure criteria
❖ 𝑆𝑒 is the modified endurance limit

❖ 𝜎𝑎 and 𝜎𝑚 should be adjusted by the fatigue stress concentration factor 𝐾𝑓
❖ The load line represents any combination of 𝜎𝑎 and 𝜎𝑚
❖ The intersection of the load line with any of the failure lines give the limiting 

values 𝑆𝑎 and 𝑆𝑚 according to the line it intercepts

❖ Completely reversible  

fluctuating stress if 𝜎𝑎 ≠ 0
and 𝜎𝑚 = 0

❖ Static stress if 𝜎𝑎 = 0 and

𝜎𝑚 ≠ 0
❖ Any other combinations of 𝜎𝑎

and 𝜎𝑚 will fall between the 

two extremes (completely 

reversed and static) 



Fatigue failure criteria

❖ Langer line connects 𝑆𝑦 on the 

𝜎𝑎-axis with 𝑆𝑦 on the 𝜎𝑚-axis 

but it is not realistic as 𝑆𝑦 is 

usually larger than 𝑆𝑒
𝜎𝑎
𝑆𝑦

+
𝜎𝑚
𝑆𝑦

= 1

❖ Goodman line considers failure 

due to static loading at 𝑆𝑢𝑡 rather 

than 𝑆𝑦; it connects 𝑆𝑒 on the 𝜎𝑎-

axis with 𝑆𝑢𝑡 on the 𝜎𝑚-axis, i.e. 

with n = factor of safety:

𝜎𝑎
𝑆𝑒

+
𝜎𝑚
𝑆𝑢𝑡

=
1

𝑛



Fatigue failure criteria

Soderberg line is the most  

conservative and connects 𝑆𝑒

on the 𝜎𝑎-axis with 𝑆𝑦 on the 

𝜎𝑚-axis; i.e. with n = factor of 

safety:

𝑎

𝑆𝑒
+
𝑚

𝑆𝑦
=
1

𝑛



Fatigue failure criteria

❖ Gerber line same as Goodman but 

uses parabolic instead of a straight 

line:

𝑛𝑎
𝑆𝑒

+
𝑛𝑚
𝑆𝑢𝑡

2

= 1

❖ ASME-elliptic line same as 

Soderberg but uses an ellipse instead 

of a straight line:

𝑛𝑎
𝑆𝑒

2

+
𝑛𝑚
𝑆𝑦

2

= 1



Goodman – Langer 

❖ Modified Goodman combines the 

Goodman  and Langer lines

❖ The load line 𝑟 = Τ𝜎𝑎 𝜎𝑚 can intercept 

any of these boundary lines or both

❖ Intercept case 1 gives fatigue criterion

❖ Intercept case 3 gives yield criterion

❖ Intercept case 2 gives intersection of the 

static yield and fatigue criteria

1

2

3



Goodman – Langer 

❖ The plot of the Modified Goodman stress 

vs. mean stress axes gives the complete 

Goodman diagram. 

❖ The enclosed area is the theoretically safe 

combinations of mean and alternating 

stresses that will not cause failure

❖ Note: the midrange-stress line is a 45°

line from the origin

▪ To get the envelope: Connect the 

endurance limit 𝑆𝑒 (above & below the 

origin) to ultimate strength 𝑆𝑢 with 

straight lines 

▪ Draw horizontal line from 𝑆𝑦 to 45° line

▪ Drop vertical line from point A to 

intersect min. stress line 

A



Goodman – Langer



Gerber – Langer



ASME-elliptic – Langer  



Failure criteria analysis

1) Determine 𝜎𝑎 and 𝜎𝑚
2) Apply fatigue stress concentration factor 𝐾𝑓 to both 𝜎𝑎 and 𝜎𝑚
3) For 𝜎𝑚 ≥ 0 apply the failure criterion (e.g. Goodman, Gerber, etc.) to 

find factor of safety “n” (Note: n > 1 indicates infinite life) 

Otherwise for 𝜎𝑚 < 0 apply 𝑎 =
𝑆𝑒

𝑛
to find factor of safety “n”; 

3) Check for localised yielding by applying Langer failure criterion to find 

“n” (Note: n > 1 indicates no yielding)



Torsional fatigue strength

❖ Testing has found that the steady-stress component has no effect on the 

endurance limit for torsional loading if the material is ductile, polished, 

notch-free, and cylindrical

❖ For less than perfect surfaces, the modified Goodman line is suitable

❖ The analysis for torsional fatigue is similar:

▪ Replace 𝜎𝑚 and 𝜎𝑎 with 𝜏𝑚 and 𝜏𝑎
▪ Replace 𝑆𝑢𝑡 with shear ultimate strength 𝑆𝑠𝑢 = 0.67𝑆𝑢𝑡
▪ Replace 𝑆𝑦 with shear ultimate yield 𝑆𝑠𝑦 = 0.577𝑆𝑦; and check for 

localized yielding by applying 

𝑎 + 𝑚 =
𝑆𝑠𝑦

𝑛
▪ Remember for pure torsion cases, normal endurance strength is converted 

to shear endurance strength with Marin loading factor 𝑘𝑐 = 0.59 ;





Finite-life fatigue strength
If life is finite, then find the fatigue life: 

a) Find equivalent completely reversible stress 𝜎𝑟𝑒𝑣:

▪ For modified Goodman

𝜎𝑟𝑒𝑣 =
𝜎𝑎

1 − Τ𝜎𝑚 𝑆𝑢𝑡
▪ For Gerber

𝜎𝑟𝑒𝑣 =
𝜎𝑎

1 − Τ𝜎𝑚 𝑆𝑢𝑡
2

b) Determine the finite life 𝑁𝑓 (i.e. number of cycles to failure) with a new 

factor of safety “n” using 

𝑁𝑓 =
Τ𝑟𝑒𝑣 𝑛

𝑎

ൗ1 𝑏

❖ 𝑎 =
𝑓𝑆𝑢𝑡

2

𝑆𝑒

❖ 𝑏 = −
1

3
log

𝑓𝑆𝑢𝑡

𝑆𝑒



Example 1

A forged steel link with uniform diameter of 30mm is subject to an axial force 

that varies from 40kN in compression to 160kN in tension. Given the tensile 

strengths are Su = 600MPa, Sy = 420MPa, and endurance strength Se = 240MPa. 

Determine the factor of safety based on Soderberg criterion  

Stress 𝑚𝑎𝑥 =
160(103)

𝑟2
= 226MPa;  and 𝑚𝑖𝑛 = −

40 103

𝑟2
= −56.6MPa; 

m =
max + min

2
= 84.7MPa; 𝑎 =

max − min

2
= 141.3MPa

Soderberg failure criterion    
1

𝑛
=
𝑎

𝑆𝑒
+
𝑚

𝑆𝑦
=

141.3

240
+

84.7

420

Factor of safety  n = 1.26  

Check for yield using Langer criterion 𝑎 + 𝑚 = Τ𝑆𝑦 𝑛 or  n = 1.86



Combination of loading modes

It may be helpful to think of fatigue in 3 categories

1) Completely reversed simple loads

2) Fluctuating simple loads

3) Combination of simple loading modes including axial, torsion & bending

In the first 2 cases, only simple loads are applied



Combination of loading modes

The distortion energy (Von Mises) theory proved to be a satisfactory method 

for combining static loads and the same approach will be used

1) Generate 2 stress elements: i.e. stress amplitude 𝜎𝑎 and mean stress 𝜎𝑚. 

Apply fatigue stress concentration factor 𝐾𝑓 to 𝜎𝑎 and 𝜎𝑚
2) Calculate the equivalent Von Mises stress for each stress element

3) Select the fatigue failure criterion (i.e. Modified Goodman, Soderberg, 

ASME-elliptic or Gerber):

▪ For the endurance limit 𝑆𝑒, use the modifiers 𝑘𝑎, 𝑘𝑏 and 𝑘𝑐 only for 

bending

▪ Do not apply the torsional load factor 𝑘𝑐 = 0.59 as it is accounted for in 

Von Mises

▪ The axial load factor 𝑘𝑐 should be added in the Von Mises calculation



Equivalent von Mises stresses

The equivalent von Mises stresses 𝑎
′ and 𝑚

′ for the combined bending, torsional 

shear, and axial stresses can be found using:

𝜎𝑎
′ = 𝐾𝑓 bending

𝜎𝑎 bending + 𝐾𝑓 axial

𝜎𝑎 axial

0.85

2

+ 3 𝐾𝑓𝑠 torsion
𝜏𝑎 tor𝑠ion

2
Τ1 2

𝜎𝑚
′ = 𝐾𝑓 bending

𝜎𝑚 bending + 𝐾𝑓 axial
𝜎𝑚 axial

2
+ 3 𝐾𝑓𝑠 torsion

𝜏𝑚 tor𝑠ion

2 Τ1 2

❖ Note: these stresses should be applied to the selected fatigue criterion and used to 

check for localized yielding using :

𝑎
′ + 𝑚

′ =
𝑆𝑦

𝑛



Example 2

A tubing is made of AISI 1018 cold-drawn steel with external diameter of 42 

mm and thickness of 4 mm. It has a 6-mm-diameter hole drilled transversely 

through it. Estimate the factor of safety guarding against fatigue and static 

failures using the Gerber and Langer failure criteria if the shaft is rotating and is 

subjected to a completely reversed torque of 120Nm in phase with a completely 

reversed bending moment of 150 Nm.

𝑆𝑢𝑡 = 440MPa, 𝑆𝑦𝑡 = 370MPa; 𝑆𝑢𝑡 < 1400MPa and 𝑆𝑒
′ = 0.5𝑆𝑢𝑡 = 220MPa



Example 2

Given D = 42mm; d = 34mm, t = 4mm, and a = 6-mm, cold drawn

Surface factor 𝑘𝑎 = 𝑎𝑆𝑢𝑡
𝑏

From Table: 𝑘𝑎 = 4.51 440 −0.265

𝑘𝑎 = 0.899

Size factor for bending and torsion (applies only for round, rotating diameter):

𝑘𝑏 = 1.24𝑑−0.107 2.79  d  51 mm

Use external diameter: 𝑘𝑏 = 1.24𝐷−0.107 = 0.831



❖ Loading factor kc = 1  when torsion is combined with other loading, such 

as bending (combined loading is managed by using the effective von 

Mises stress)

❖ No temperature factor 𝑘𝑑 = 1

❖ No reliability factor 𝑘𝑒 = 1

❖ No miscellaneous-effects factor 𝑘𝑓 = 1

❖ 𝑆𝑒 = 𝑘𝑎𝑘𝑏𝑘𝑐𝑘𝑑𝑘𝑒𝑘𝑓𝑆𝑒
′ = 164.3MPa

❖ Bending stress concentration factor

Example 2

Τ𝑎 𝐷 = Τ6 42 = 0.143,

Τ𝑑 𝐷 = Τ34 42 = 0.810,

From Table A-16: A = 0.798, and 𝐾𝑡 = 2.366

𝑍𝑛𝑒𝑡 =
𝐴
32𝐷

𝐷4 − 𝑑4 = 331 103 mm3;





Example 2
Torsion stress concentration factor:

Τ𝑎 𝐷 = Τ6 42 = 0.143,

Τ𝑑 𝐷 = Τ34 42 = 0.810,

From table: A = 0.89, and 𝐾𝑡𝑠 = 1.75

𝐽𝑛𝑒𝑡 =
𝐴
32

𝐷4 − 𝑑4 = 155 103 mm4;





Example 2

Notch sensitivity for bending: q = 0.78 (based on hole radius r = 3mm)

𝐾𝑓 = 1 + 𝑞 𝐾𝑡 − 1 = 2.07

Notch sensitivity for torsion: q = 0.81 (based on hole radius r = 3mm)

𝐾𝑓𝑠 = 1 + 𝑞 𝐾𝑡𝑠 − 1 = 1.61



Example 2

❖ Given completely reversed bending moment M = 150 Nm 

❖ Given completely reversed torque T = 120Nm

Alternating bending stress 𝐾𝑓𝑎 = 𝐾𝑓
𝑀

𝑍𝑛𝑒𝑡
= 93.8MPa

Alternating torsional stress 𝐾𝑓𝑠𝑎 = 𝐾𝑓𝑠
𝑇 Τ𝐷 2

𝐽𝑛𝑒𝑡
= 26.2MPa

Note: both bending and torsion are completely reversible (i.e. 𝜎𝑚 = 𝜏𝑚 = 0)

Calculate Von Mises stresses using

𝜎𝑎
′ = 𝐾𝑓 bending

𝜎𝑎 bending + 𝐾𝑓 axial

𝜎𝑎 axial

0.85

2

+ 3 𝐾𝑓𝑠 torsion
𝜏𝑎 tor𝑠ion

2
Τ1 2

𝜎𝑚
′ = 𝐾𝑓 bending

𝜎𝑚 bending + 𝐾𝑓 axial
𝜎𝑚 axial

2
+ 3 𝐾𝑓𝑠 torsion

𝜏𝑚 tor𝑠ion

2 Τ1 2

𝑎
′ = 93.8 2 + 3 26.2 2 Τ1 2 = 104.2MPa; and 𝑚

′ =0



Example 2

Estimate the factor of safety based on Gerber criterion: 

𝑛𝑎
′

𝑆𝑒
+

𝑛𝑚
′

𝑆𝑢𝑡

2

= 1

𝑛 =
𝑆𝑒
𝑎
′ = 1.58

Check for yielding using Langer failure criterion:

𝑎
′ + 𝑚

′ = Τ𝑆𝑦 𝑛

𝑛 =
𝑆𝑦𝑡
𝑎
′ = 3.55



Other charts
Stress concentration factors (static)

Note: 𝐾𝑓 = 1 + 𝑞 𝐾𝑡 − 1


