
Design of Car Suspension System

Author: Liuchao (Christopher) Jin LIJ33@pitt.edu

Course Advisor: Prof. Sai Cheong Fok saicheong.fok@scupi.cn

Course: ME1020 Mechanical Vibration

September 9, 2024

mailto:LIJ33@pitt.edu
mailto:LIJ33@pitt.edu


Design of Car Suspension System TABLE OF CONTENTS

Table of Contents

Acknowledgments iii

1 Introduction 1

2 Analysis of 2 DoF Car Suspension Systems 2

2.1 Derivation of Differential Equations of Motion . . . . . . . . . . . . . . . . . . . . . . 2

2.2 Determine the Properties of Suspension System . . . . . . . . . . . . . . . . . . . . . . 5

2.3 Response of Suspension System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.4 Trial for Different k1 and c . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Discussion Part: Other Means of Vibration Control for the Car Suspension System 12

3.1 Passive Suspension System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Semi–Active Suspension System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.3 Active Suspension System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Conclusion 13

References 15

Appendices 17

A Natural Frequencies and Mode Shapes Code 17

B Calculation of Transfer Function for the System 18

C Calculation of Displacement Transmissibility and Force Transmissibility 18

D Code for Numeric Solution for Car Motion 19

D.1 Code in Numeric Response with Damper Main File . . . . . . . . . . . . . . . . . . . . 19

D.2 Code in Numeric Response without Damper Main File . . . . . . . . . . . . . . . . . . 20

D.3 Code in Numeric Response Function File . . . . . . . . . . . . . . . . . . . . . . . . . 20

E Simulink Solution for Car Motion 21

E.1 Simulink Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

E.2 Code in Upper Function Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

i



Design of Car Suspension System LIST OF FIGURES

E.3 Code in Lower Function Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

F Code for Minimum Displacement 22

G Code for Appropriate k1 and c 22

List of Tables

List of Figures
1 Suspension System in a Real Car. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Simplified Suspension System of Car Model. . . . . . . . . . . . . . . . . . . . . . . . 3

3 Mode shapes for the Suspension System. . . . . . . . . . . . . . . . . . . . . . . . . . . 6

4 Numeric Response of Car Model with Damper. . . . . . . . . . . . . . . . . . . . . . . 8

5 Simulink Response for x1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

6 Simulink Response for x2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

7 Numeric Response of Car Model without Damper. . . . . . . . . . . . . . . . . . . . . . 10

8 The Characteristics of X1 with Respect to Different k1 and c. . . . . . . . . . . . . . . . 11

9 The Response for the Car Suspension System when k1 = 5000 and c = 1500. . . . . . . 12

10 Sketch for Active Suspension System. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

11 Components of Each Suspension System. . . . . . . . . . . . . . . . . . . . . . . . . . 14

12 Block Diagram for the Car Motion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

ii



Design of Car Suspension System LIST OF FIGURES

Acknowledgments
I want to thank my professor of the course - Mechanical Vibration, Sai Cheong Fok. Whenever I met
the problem, he listened carefully to my problems and provided me with fantastic solutions with his
strong professional knowledge and rich research results. After four semesters’ study in his class, I have
a systematic understanding of what mechanical engineering is. To be honest, I really enjoyed this course
and cherished the time with Prof. Fok.

iii



Design of Car Suspension System 1 INTRODUCTION

1 Introduction
With increased requirements for vehicle performances, vehicle suspension systems are of importance
for contributing to the cars handling and keeping vehicle occupants comfortable and reasonably well
isolated from road noise, bumps, vibrations, etc (Bastow et al., 2004). The stability of vehicle when
it moving above different terrain is very important criterion in addition to ride comfort of passengers.
Traffic accidents in the world wide lead to losing people their lives or suffer a non–fatal injury. The
ride comfort and road handling of automobiles are majorly achieved by their suspension systems, which
represent the connection between automobile body and road (Mitra et al., 2016). The comfortable ride we
enjoy today is largely attributed to modern advances in car suspension systems. Designing an effective
suspension system is as much an art as it is a science. Lots of compromises must be made between ride
quality and handling performance, the former being how comfortable the car is and the latter, how well
it remains stable and controllable at speed (Nagarkar et al., 2018). In reality, the suspension system has a
massive amount to do and the components have to withstand an enormous amount of stress compared to
other major systems in a car. The suspension system as shown in Figure 1 is located between the frame
and the wheels and serves multiple important purposes. Ideally, well-tuned suspension will absorb bumps
and other imperfections in the road so the people inside the car can travel comfortably. While this is very
important from a passenger’s perspective, the driver will notice certain other attributes of the suspension
system. This system also is responsible for keeping the wheels on the ground as much as possible (Shelke
et al., 2018).

Figure 1. Suspension System in a Real Car.

Two principal components or parts–the springs and dampening mechanisms–are the basic construction
of a modern car suspension, Of course, there may be other parts such as bushings, suspension strut, and
others (Karnopp & Margolis, 1984). The spring gives the car the ability to compensate for any irregularity
on the surface of the road. It also serves to support any additional weight on the vehicle without excessive
sagging. The spring is also that part of the suspension that keeps it at a predetermined height. While a
spring can help absorb the energy off bumps on the road, without a dampening mechanism to help control
or dissipate this up and down energy, the people inside the car will be left with a vehicle that will continue
to oscillate with each bump until such time that the energy has fully dissipated (Majjad, 1997). Therefore,
the damper plays a important role in dissipating the oscillating energy that caused by irregularity on the

1



Design of Car Suspension System 2 ANALYSIS OF 2 DOF CAR SUSPENSION SYSTEMS

surface of road.
In this project, I will study the motion response of a given car suspension system, conduct the analysis
of car suspension systems using different analytical, numerical, and Simulink models in Section 2, and
explore the means of vibration control for the suspension system, including passive system, active system,
and semi–active system in Section 3.

2 Analysis of 2 DoF Car Suspension Systems
In this section, I will research the response of the car suspension system due to the input the sine function
from the road. First, I will derive the differential equations of motion and obtain the mass, stiffness, and
damping matrices, and the force vector. Second, according to the result in the first step, I will determine
the displacement transmissibility, force transmissibility, natural frequencies and mode shapes, etc. for
the systems using MATLAB. In depth, I will use MATLAB to compute the responses (i.e. x1 versus time
and x2 versus time) of the system with and without the damper. Afterwards, I will vary the values for
c and k1 to examine the effects and the quality of the response, including displacement transmissibility,
and force transmissibility, to the input road surface, from which I will determine the values for c and k1
that would produce the “best” suspension system.

2.1 Derivation of Differential Equations of Motion

For the model Professor Fok provided, which is shown in Figure 2, I choose the displacements of the two
masses x1 and x2 as the generalized coordinates. The static equilibrium positions of m1 and m2 are set
as the coordinate origins. Assume

x1 > x2 > z > 0 (1)

which implies that the springs are in tension and

ẋ1 > ẋ2 > ż > 0 (2)

The free-body diagrams of m1 and m2 are shown in the right side of Figure 2. According to the assump-
tion, the massm1 moves faster than the massm2, and the elongation of the spring k1 is x1−x2. The force
exerted by the spring k1 on the mass m1 is downward as it tends to restore to the undeformed position.
Because of Newton’s third law, the force exerted by the spring k1 on the mass m2 has the same magni-
tude, but opposite in direction. Other spring forces and damping forces can be determined using the same
logic. Note that the gravitational forces, m1g and m2g, are not included in the free-body diagrams.
Applying Newton’s second law to the masses m1 and m2, respectively, gives

+ ↑ x :
∑

Fx = max (3)

−k1(x1 − x2)− c(ẋ1 − ẋ2) = m1ẍ1 (4)

k1(x1 − x2) + c(ẋ1 − ẋ2)− k2(x2 − y) = m2ẍ2 (5)

2
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189Mechanical Systems

Example : A Two-Degree-of-Freedom Quarter-Car Model

Consider a quarter-car model shown in Figure 5.34a, where m1 is the mass of one-fourth 
of the car body and m2 is the mass of the wheel–tire–axle assembly. The spring k1 rep-
resents the elasticity of the suspension and the spring k2 represents the elasticity of the 
tire. z(t) is the displacement input due to the surface of the road. The actuator force, f, 
applied between the car body and the wheel–tire–axle assembly, is controlled by feed-
back and represents the active components of the suspension system.

a. Draw the necessary free-body diagrams, and derive the differential equations
of motion.

b. Determine the state-space representation. Assume that the displacements of
the two masses, x1 and x2, are the outputs and the state variables are x1 = x1,
x2 = x2, x x3 1=  , and x x4 2=  .

c. The parameter values are m1 =  290  kg, m2 =  59  kg, b1 =  1000  N·s/m,
k1 = 16,182 N/m, and k2 = 19,000 N/m. Use MATLAB commands to define the
system in the state-space form and then convert it to the transfer function
form. Assume that all the initial conditions are zero.

Solution

a. We choose the displacements of the two masses x1 and x2 as the generalized
coordinates. The static equilibrium positions of m1 and m2 are set as the coordi-
nate origins. Assume

x x z1 2 0> > >

which implies that the springs are in tension and

  x x z1 2 0> > >

The free-body diagrams of m1 and m2 are shown in Figure 5.34b. According to 
the assumption, the mass m1 moves faster than the mass m2, and the elonga-
tion of the spring k1 is x1 – x2. The force exerted by the spring k1 on the mass 
m1 is downward as it tends to restore to the undeformed position. Because of 

m1

m2

k1

k2

c

x1

x2

y

m1

x1

k2 (x2 – z)

k1 (x1 – x2) c (x1 – x2)

x2
m2

Figure 2. Simplified Suspension System of Car Model.

Rearranging the equations into the standard input–output form,{
m1ẍ1 + cẋ1 − cẋ2 + k1x1 − k1x2 = 0

m2ẍ2 − cẋ1 + cẋ2 − k1x1 + (k1 + k2)x2 = k2y
(6)

which can be expressed in second-order matrix form as shown in Equation 7.[
m1 0

0 m2

]{
ẍ1
ẍ2

}
+

[
c −c
−c c

]{
ẋ1
ẋ2

}
+

[
k1 −k1
−k1 k1 + k2

]{
x1
x2

}
=

[
1 0

−1 k2

]{
0

y

}
(7)

Because my student ID number is 2018141521058, which is ending with 8, the parameter I get for the
car model is that the vehicle is travelling with a maximum velocity v = 100 km/h on a sinusoidal
road surface with amplitude Y = 0.019 m, and a wavelength of λ = 5.5 m. Assume m1 = 1010 kg,
m2 = 76 kg, k1 = 31110 N/m, k2 = 321100 N/m, and c = 4850 N · s/m.
There are many reasons caused the disturbance such as road surface terrain, aerodynamic forces, non-
uniformity of the wheel, tire assembly, and even or barking forces (Tsubokura et al., 2010). According
to the relationship among velocity, wavelength, and frequency, I can derive the frequency of the road
surface irregularity as shown in Equation 8.

f =
v

λ
=

100
3.6

m/s

5.5 m
= 5.0505 Hz (8)

Then, we can know that the input frequency ω is equal to

ω = 2πf = 2π × 5.0505 Hz = 31.7333 rad/s (9)

We also know the amplitude of input signal, according to which we can derive the entire input function
y(t) as shown in Equation.

y(t) = Y sinωt = 0.019 sin 31.7333t (10)

3
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Substituting these parameters into Equation 6 and 7 yields that the differential equations of motion and
the matrix form of motion are shown in Equation 11 and 12, respectively.{

1010ẍ1 + 4850ẋ1 − 4850ẋ2 + 31110x1 − 31110x2 = 0

76ẍ2 − 4850ẋ1 + 4850ẋ2 − 31110x1 + (31110 + 321100)x2 = 321100× 0.019 sin 31.7333t
(11)

[
1010 0

0 76

]{
ẍ1
ẍ2

}
+

[
4850 −4850
−4850 4850

]{
ẋ1
ẋ2

}
+

[
31110 −31110
−31110 31110 + 321100

]{
x1
x2

}
=

[
1 0

−1 321100

]{
0

0.019 sin 31.7333t

}
=

{
0

6101 sin 31.7333t

} (12)

From Equation 12, I can obtain the mass, stiffness, and damping matrices, and the force vector as shown
in Equation 13, 14, 15, and 16, respectively.

M =

[
1010 0

0 76

]
(13)

K =

[
31110 −31110
−31110 352210

]
(14)

C =

[
4850 −4850
−4850 4850

]
(15)

F =

{
0

6101 sin 31.7333t

}
(16)

Note that the gravity terms in this model do not appear in the equations of motion, because the static
equilibrium positions are chosen as the coordinate origins.
In depth, I also derive the state-space representation of the system. Note that the input to the system is
the road surface irregularity y. The state, the input, and the output vectors are

x =


x1
x2
x3
x4

 =


x1
x2
ẋ1
ẋ2

 , u =

{
u1
u2

}
=

{
0

y(t)

}
, y =

{
x1
x2

}
(17)

The state-variable equations are then obtained as

ẋ1 = x3

ẋ2 = x4

ẋ3 = ẍ1 = −
k1
m1

x1 +
k1
m1

x2 −
c

m1

ẋ1 +
c

m1

ẋ2

= − k1
m1

x1 +
k1
m1

x2 −
c

m1

x3 +
c

m1

x4

ẋ4 = ẍ2 =
k1
m2

x1 −
k1 + k2
m2

x2 +
c

m2

ẋ1 −
c

m2

ẋ2 +
k2
m2

y(t)

=
k1
m2

x1 −
k1 + k2
m2

x2 +
c

m2

x3 −
c

m2

x4 +
k2
m2

u2

(18)

4
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The output equation is

y =

{
x1
x2

}
(19)

Thus, the state-space representation is
ẋ1
ẋ2
ẋ3
ẋ4

 =


0 0 1 0

0 0 0 1

− k1
m1

k1
m1

− c
m1

c
m1

k1
m2

−k1+k2
m2

c
m2

− c
m2



x1
x2
x3
x4

+


0 0

0 0

0 0

0 k2
m2


{
u1
u2

}

y =

[
1 0 0 0

0 1 0 0

]
x1
x2
x3
x4

+

[
0 0

0 0

]{
u1
u2

} (20)

Then, I use MATLAB to get the transfer function of input irregularity of the road and the output x1 and
x2, which is shown in Appendices B, from which we can get the results as shown in Equation 21 and 22.

X1

Y
=

2.029× 104s+ 1.301× 105

s4 + 68.62s3 + 4665s2 + 2.029× 104s+ 1.301× 105
(21)

X1

Y
=

4225s2 + 2.029× 104s+ 1.301× 105

s4 + 68.62s3 + 4665s2 + 2.029× 104s+ 1.301× 105
(22)

2.2 Determine the Properties of Suspension System

Using mass, stiffness, and damping matrices, and the force vector, I can calculate the natural frequencies
and mode shapes using the MATLAB code as shown in Appendices A. From the result I get from the
code, I can obtain the natural frequencies of the x1 and x2 with the damper as shown in Equation 23.

ω1 = 5.2976 rad/sec and ω2 = 68.0961 rad/sec (23)

The plot for mode shapes for the suspension system is shown in Figure 3. From the mode shapes diagram,
I can observe that for mode 1, x1 will vibrate crazily compared to x2, which means the people in the car
will feel uncomfortable if there is only mode 1. By contrast, for mode 2, x1 hardly vibrates compared
to x2. However, we cannot know total shape of the system response just using mode shape. We need
to combine the initial condition to derive the response equations for x1 and x2 to obtain the shape of
response.
Next, I will conduct the derivation of displacement transmissibility and force transmissibility for general
2 DoF damped system.
We can use complex algebra to represent the harmonic external forces as Fi(t) = Fi0e

jωt for i = 1, 2 and
ω is the forcing frequency.
For the 2-DoF damped system:[

m11 m12

m21 m22

]{
ẍ1
ẍ2

}
+

[
c11 c12
c21 c22

]{
ẋ1
ẋ2

}
+

[
k11 k12
k21 k22

]{
x1
x2

}
=

[
F10

F20

]
· ejωt (24)

5
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Figure 3. Mode shapes for the Suspension System.

The steady state response will have the form xi(t) = Xie
jωt.

Note that ẋi(t) = jωXie
jωt and ẍi(t) = −ω2Xie

jωt.
Substituting these back into the equations of motion:

−ω2

[
m11 m12

m21 m22

] [
X1

X2

]
ejωt + jω

[
c11 c12
c21 c22

] [
X1

X2

]
ejωt +

[
k11 k12
k21 k22

] [
X1

X2

]
ejωt =

[
F10

F20

]
· ejωt (25)

Simplifying Equation 25 above yields that[
−ω2m11 + jωc11 + k11 −ω2m12 + jωc12 + k12
−ω2m21 + jωc21 + k21 −ω2m22 + jωc22 + k22

] [
X1

X2

]
=

[
F10

F20

]
(26)

The equation can be rewritten as:[
Z11 Z12

Z21 Z22

] [
X1

X2

]
=

[
F10

F20

]
⇐⇒

[
Z(jω)

] [X1

X2

]
=

[
F10

F20

]
(27)

where the mechanical impedance is defined as (for r, s = 1, 2)

Zrs(jω) = −ω2mrs + jωcrs + krs (28)

We can solve for displacement as shown below:[
X1

X2

]
=
[
Z(jω)

]−1
[
F10

F20

]
(29)

6
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In this car suspension model, the displacement transmissibility and the force transmissibility are defined
as Equation 30 and 31.

displacement transmissibility form1 =
X1

Y
= k2 ·

X1

F20

= k2 ·

∣∣∣∣∣−k12 + ω2m12 − jωc12
det
([
Z(jω)

]) ∣∣∣∣∣
displacement transmissibility form2 =

X2

Y
= k2 ·

X2

F20

= k2 ·

∣∣∣∣∣k11 − ω2m11 + jωc11

det
([
Z(jω)

]) ∣∣∣∣∣
(30)

force transmissibility form1 =
k1(X1 −X2)

F20

= k1 ·

{∣∣∣∣∣−k12 + ω2m12 − jωc12
det
([
Z(jω)

]) ∣∣∣∣∣−
∣∣∣∣∣k11 − ω2m11 + jωc11

det
([
Z(jω)

]) ∣∣∣∣∣
}

force transmissibility form2 =
k2(X2 − Y )− k1(X1 −X2)

F20

= k2 ·

{∣∣∣∣∣k11 − ω2m11 + jωc11

det
([
Z(jω)

]) ∣∣∣∣∣− 1

k2

}
−

k1 ·

{∣∣∣∣∣−k12 + ω2m12 − jωc12
det
([
Z(jω)

]) ∣∣∣∣∣−
∣∣∣∣∣k11 − ω2m11 + jωc11

det
([
Z(jω)

]) ∣∣∣∣∣
}

(31)

Using the displacement transmissibility and the force transmissibility I derived, I write the MATLAB
code as shown in Appendices C. After runing the code, I can find out the result: the displacement trans-
missibility for mass 1 and 2 are equal to 0.169 and 1.077, respectively, and the force transmissibility for
mass 1 and 2 are equal to 0.088 and 0.165, respectively.

2.3 Response of Suspension System

Using the code shown in Appendices D.1 and D.3, I can plot the numeric response of x1 and x2 with
damper as shown in Figure 4.
In repect to the displacement transmissibility and the force transmissibility, from Figure 4, I can obtain
the maximum displacement for steady-state response X1 and X2. Then, I can use Equation 32 and 33 to
find the displacement transmissibility and the force transmissibility.

displacement transmissibility form1 =
X1

Y
=

0.003406

0.019
= 0.1793

displacement transmissibility form2 =
X2

Y
=

0.02276

0.019
= 1.1979

(32)

7
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Figure 4. Numeric Response of Car Model with Damper.

force transmissibility form1 =
k1(X1 −X2)

k2Y
=

∣∣∣∣31110× (0.003406− 0.02276)

321100× 0.019

∣∣∣∣ = 0.09869

force transmissibility form2 =
k2(X2 − Y )− k1(X1 −X2)

k2Y

=

∣∣∣∣321100× (0.02276− 0.019)− 31110× (0.003406− 0.02276))

321100× 0.019

∣∣∣∣
= 0.2965

(33)

Comparing the result I get from the numeric solution with that I derive from my calculation, I can know
that there is a little bit difference between them. But they are already very close to each other. Also, we
notice that the displacement transmissibility and the force transmissibility of mass 1 are relatively low,
which are almost near 10%. This means the displacement and the force transmitted due to the irregularity
of the road to the driver inside the car are small compared to that of the road, which ensures the comfort
of the driver in the car.
Then, I use Simulink to confirm my numeric solution. The Simulink block diagram is shown in Appen-
dices E.1. The results of Simulink response for x1 and x2 are shown in Figure 5 and 6, respectively.

8
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Figure 6. Simulink Response for x2.

Therefore, comparing Figure 4 with Figure 5 and 6, I can know that the response derived by numeric
method is almost the same as the that derived by Simulink method.
Next, I plot the numeric response of x1 and x2 without damper as shown in Figure 7. Comparing the
diagram for car suspension system with and without damp, I can conclude that the damper function
dissipates the energy of suspension vibrations where the damper absorbs a part of the shock energy
directly when a vehicle goes over road excitation; it also guides spring action by dissipating the stored
energy (Xie & Wang, 2015).

2.4 Trial for Different k1 and c

At fist, let’s conduct the analytical derivation of displacement of mass 1-X1. From the analytical part
in Section 2.2, I already get the solutions for 2-DoF damped system, which are shown in Equation 30.
Substituting Equation 28 into Equation 31, I can obtain the displacement of mass 1, X1, represented by
k1 and c. The determinant of mechanical impedance is equal to

det
([
Z(jω)

])
= det

([
−ω2m11 + jωc11 + k11 −ω2m12 + jωc12 + k12
−ω2m21 + jωc21 + k21 −ω2m22 + jωc22 + k22

])
=
(
−ω2m11 + jωc11 + k11

) (
−ω2m22 + jωc22 + k22

)
−
(
−ω2m12 + jωc12 + k12

) (
−ω2m21 + jωc21 + k21

)
=
(
−ω2m11 + k11

) (
−ω2m22 + k22

)
−
(
−ω2m12 + k12

) (
−ω2m21 + k21

)
+ jω[c11

(
−ω2m22 + k22

)
+ c22

(
−ω2m11 + k11

)
− c12

(
−ω2m21 + k21

)
− c21

(
−ω2m12 + k12

)
]− ω2c11c22 + ω2c12c21

(34)
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Figure 7. Numeric Response of Car Model without Damper.

Substituting the parameters of car suspension system model except k1 and c into Equation 34 yields that

det
([
Z(jω)

])
=
(
−ω2m11 + k11

) (
−ω2m22 + k22

)
−
(
−ω2m12 + k12

) (
−ω2m21 + k21

)
+ jω[c11

(
−ω2m22 + k22

)
+ c22

(
−ω2m11 + k11

)
− c12

(
−ω2m21 + k21

)
− c21

(
−ω2m12 + k12

)
]− ω2c11c22 + ω2c12c21

=
(
−31.732 × 1010 + k1

) [
−31.732 × 78 + (k1 + 321100)

]
−
(
−31.732 × 0− k1

) (
−31.732 × 0− k1

)
+ 31.73j{c×

[
−31.732 × 78 + (k1 + 321100)

]
+ c×

(
−31.732 × 1010 + k1

)
− (−c)×

(
−31.732 × 0− k1

)
− (−c)×

(
−31.732 × 0− k1

)
}

− 31.732 × c× c+ 31.732 × (−c)× (−c)
= −2.487× 1011 − 7.725× 105k1 − 2.451× 107cj

(35)
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Therefore, I can find the displacement of mass 1 as show in Equation 36.

X1 = k2Y ·
X1

F20

= k2Y ·

∣∣∣∣∣−k12 + ω2m12 − jωc12
det
([
Z(jω)

]) ∣∣∣∣∣
= k2Y ·

∣∣∣∣ − (−k1)− 31.73 (−c) j
−2.487× 1011 − 7.725× 105k1 − 2.451× 107cj

∣∣∣∣
= k2Y

√
k21 + (31.73c)2√

(−2.487× 1011 − 7.725× 105k1)2 + (2.451× 107c)2

(36)

In order to get the “best” suspension system, I need to the minimize X1 in Equation 36.

X1 = k2Y

√
k21 + (31.73c)2√

(−2.487× 1011 − 7.725× 105k1)2 + (2.451× 107c)2

=
k2Y√

5.968× 1011 + 3.843×1017k1
k21+(31.73c)2

+ 6.187×1022

k21+(31.73c)2

(37)

I use MATLAB to determine the characteristics of X1 with respect to different k1 and c, whose code is
shown in Appendices F. The plot I obtain is shown in Figure 8.

Figure 8. The Characteristics of X1 with Respect to Different k1 and c.

Hence, I can know that the minimum displacement X1 occurs at k1 = 0 and c = 0, which is unrealistic.
In order to produce the “best” suspension system, I need to choose appropriate value for k1 and c. In this
model, I will choose k1 = 5000 and c = 1500 as my parameter. And I use the code shown in Appendices
G to plot the response with k1 = 5000 and c = 1500 as shown in Figure 9.
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3 DISCUSSION PART: OTHER MEANS OF VIBRATION CONTROL FOR THE CAR

SUSPENSION SYSTEM
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Figure 9. The Response for the Car Suspension System when k1 = 5000 and c = 1500.

3 Discussion Part: Other Means of Vibration Control for the Car
Suspension System

There are three methods of suspension system strategies; passive system, active system, and semi–active
system. The passive suspension system is the model which we have analyzed in Section 2. Although the
passive suspension is still utilized in vehicle industry, these requirements cannot be achieved by a pas-
sive suspension with steel springs and passive dampers. Therefore, an increasing need has appeared over
the last years for new suspension systems to maintain the level of comfort that customers expect from
cars, they still maintain high safety standards of vehicles while taking into account the cost reduction
(Moheyeldein et al., 2018). The semi-active control included; magneto rheological damper and electro
rheological damper, in this case; the effective area in which the oil damping flowing through was varied
according to road disturbance (Sam et al., 2004). An active suspension is a type of automotive suspen-
sion on a vehicle. It uses an onboard system to control the vertical movement of the vehicle’s wheels
relative to the chassis or vehicle body rather than the passive suspension provided by large springs where
the movement is determined entirely by the road surface (Van der Sande et al., 2013). So-called active
suspensions are divided into two classes: real active suspensions, and adaptive or semi-active suspen-
sions. While adaptive suspensions only vary shock absorber firmness to match changing road or dynamic
conditions, active suspensions use some type of actuator to raise and lower the chassis independently at
each wheel (Lin & Lian, 2010).
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3.1 Passive Suspension System

Passive suspension systems comprise springs and dampers inserted between the body of vehicle and the
wheel-axle assembly. Passive suspensions have the advantages of simple mechanism, easy implementa-
tion and high reliability, but they are inadequate in improving ride comfort or road holding for the reason
that invariant spring and damper characteristics are unable to cope with different road conditions and
conflicting criteria (Tamboli & Joshi, 1999) (Sharp & Hassan, 1986) (Naudé & Snyman, 2003). Because
it has already been discussed in Section 2, I will not go through in detail in this section.

3.2 Semi–Active Suspension System

Semi-active suspension systems feature variable dampers or springs, which means that the damping coef-
ficients or the spring stiffness can be adjusted within a given range. Due to their low energy consumption
and high reliability, they are available in a wide range of production vehicles (Du et al., 2005) (Paulides
et al., 2006). However, the resulting damper forces or spring forces are restricted by passivity constraints,
i.e., they can only counteract the relative motion of the damper and dissipate energy passively, which are
limited in improving ride comfort although they represent a considerable improvement over passive sus-
pension systems.

3.3 Active Suspension System

An active control system, as shown in Figure 10, required external power source or many control actuators
that apply forces to the suspension in prescribed manner. These forces can be required to both add and
dissipate energy in the suspension (Sun et al., 2020). The components of each suspension system is shown
in Figure 11. However, due to their energy requirements as well as weight and packaging aspects, active
suspension systems have not been integrated in production vehicles, but undoubtedly, active suspensions
will be the trend of future vehicle suspension design (Li et al., 2011).

4 Conclusion
In this project, I have explored simple passive car suspension system through their analytical and nu-
merical also Simulink response due to the irregularity of the road, determined the proprieties, i.e. dis-
placement transmissibility, force transmissibility, natural frequencies and mode shapes, of the model,
and reanalyzed the suspension system without damper to figure out the role of damper in car suspension
system. Besides, I have also searched literature for other means of vibration control for the suspension
system and found the characteristics of each method. After going through this project, I have a more
in-depth understanding of how the car suspension system works, how the car uses the suspension system
to increase comfort and safety, and the principles of modern advanced car suspension systems, which has
laid a solid foundation for me to engage in automobile research in the future.
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1.3 Road Excitation Model 7

Fig. 1.4 The model of full-car active suspension system

1.3 Road Excitation Model

The load spectrum is typically bandwidth-limited to lower frequencies, and its effects
can be relatively easily checked (mostly w.r.t. suspension deflections.) The most
relevant for ride studies are ground input disturbances caused by road roughness.
There are many possible ways to analytically describe the road inputs, which can
be classified as shock or vibration [10]. Shocks are discrete events of relatively
short duration and high intensity, as, e.g. caused by a pronounced bump or pothole
on an otherwise smooth road. Vibrations, on the other hand, are characterized by
prolonged and consistent excitations that are felt on, say, rough roads. Obviously, a
well-designed suspension must perform adequately in a wide range of shock and
vibration environments. A simple model of the vertical road displacement zr (t)
resulting from a singular disturbance event is given by

zr (t) =
{

A
2 (1 − cos( 2πv

L t)), 0 ≤ t ≤ L
v

0, t > L
v

(1.8)

where A represents the bump height, L is the bump length, and v is the velocity of
the passing vehicle [10]. Taking the derivative of zr (t), we have

żr (t) =
{

πAv
L sin( 2πv

L t), 0 ≤ t ≤ L
v

0, t > L
v

(1.9)

Figure 10. Sketch for Active Suspension System.

4 1 Background, Modelling and Problem …

Then, by choosing Zeq
r = 0, the equilibrium point may be rewritten as:

[
Zeq
s

Zeq
u

]

=
[
L − msg

ks
+ Rt − (ms+mu)g

ku
Rt − (ms+mu)g

ku

]

(1.4)

This equilibrium point will then be used to simplify the system model, in order to
consider only the dynamical parts.

Around the equilibrium point (1.4), the following dynamical model is thus com-
monly used:

{
ms z̈s = −ks(zs − zu) − cs(żs − żu) + u
mu z̈t = ks(zs − zu) + cs(żs − żu) − ku(zu − zr ) − ct (żu − żr ) − u

(1.5)

where zs and zu are the displacements of the sprung and unsprung masses, respec-
tively, zr is the road displacement input, which is shown in Fig. 1.2. The other
variables have the same meaning with (1.1).

Remark 1.1 In (1.1), the damper force and spring force are assumed as linear vari-
ation, which results that the quarter-car dynamic model behaves as a linear system.
The linear model is popular because of many advantages, such as convenience for
performance analysis, easines to be controlled and so on. However, since the ac-
tual damping coefficient cs is always different in the process of the extension and

Fig. 1.2 Quarter-Car active suspension model (relative displacement)
Figure 11. Components of Each Suspension System.
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Appendices

A Natural Frequencies and Mode Shapes Code
Input Matlab source for Calculation of Natural Frequencies and Mode Shapes:

1 clc; clf; clear all;
2 % Clear all the things that are remained in the before command.

3 m1 = 1010;

4 m2 = 76;

5 k1 = 31110;

6 k2 = 321100;

7 % Properties of the system.

8 m = [m1 0; 0 m2];

9 k = [k1 -k1; -k1 k1+k2];

10 % Define [M] and [K] matrices

11 eigsort(k,m);

12 function [u,wn] = eigsort(k,m)

13 Omega = sqrt(eig(k,m));
14 [vtem,~] = eig(k,m);
15 % Obtain eigenvalues and eigenvectors of A

16 [wn,isort] = sort(Omega);
17 % Determine the natural frequencies of the 2 DoF system.

18 wnlength = length(wn);
19 for i = 1:wnlength

20 v(:,i) = vtem(:,isort(i));

21 end
22 % Determine the eigenvectors of the system.

23 A1_A2_1 = v(1,1)/v(2,1);

24 A1_A2_2 = v(1,2)/v(2,2);

25 % Determine the ratios of eigenvectors.

26 disp("The natural frequencies are (rad/sec)")
27 disp(wn)
28 disp("The eigenvectors of the system are")

29 disp(v)
30 disp("Ratios of eigenvectors are:")

31 disp(A1_A2_1);
32 disp(A1_A2_2);
33 % Display the parameters I want.

34 figure(1);
35 % Open one figure.

36 plot([0,1,2,3], [0,A1_A2_1,1,0],’b-s’, ’LineWidth’, ...

37 2, ’MarkerSize’,10);

38 hold on;

39 plot([0,1,2,3], [0,-A1_A2_2,-1,0],’r-s’, ’LineWidth’, ...

40 2, ’MarkerSize’,10);

41 hold off;

42 xlabel(’Mass Number’);

43 ylabel(’Eigne Vector Ratio’);

44 xticks([1 2]);

45 legend(’Mode 1’, ’Mode 2’)

46 grid on;
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C CALCULATION OF DISPLACEMENT TRANSMISSIBILITY AND FORCE

TRANSMISSIBILITY

47 % Plot the mode shape of the car model.

48 end

B Calculation of Transfer Function for the System
Input Matlab source for Calculation of Natural Frequencies and Mode Shapes:

1 clc; clf; clear all;
2 % Clear all the things that are remained in the before command.

3 m1 = 1010;

4 m2 = 76;

5 c = 4850;

6 k1 = 31110;

7 k2 = 321100;

8 % Properties of the system.

9 A = [0 0 1 0;

10 0 0 0 1;

11 -k1/m1 k1/m1 -c/m1 c/m1;

12 k1/m2 -(k1+k2)/m2 c/m2 -c/m2];

13 B = [0 0; 0 0; 0 0; 0 k2/m2];

14 C = [1 0 0 0; 0 1 0 0];

15 D = zeros(2,2);
16 % State-space representation matrix of the system.

17 sys_ss = ss(A,B,C,D); % Get the state-space representation.

18 sys_tf = tf(sys_ss); % Get the transfer function.

C Calculation of Displacement Transmissibility and Force Trans-
missibility

Input Matlab source for Displacement Transmissibility and Force Transmissibility:

1 clc; clf; clear all;
2 % Clear all the things that are remained in the before command.

3 m1 = 1010;

4 m2 = 76;

5 c = 4850;

6 k1 = 31110;

7 k2 = 321100;

8 omega = 100/3.6/5.5*2*pi;
9 % Properties of the system.

10 M = [m1 0; 0 m2];

11 C = [c -c; -c c];

12 K = [k1 -k1; -k1 k1+k2];

13 % Define [M], [C] and [K] matrices.

14 Z = -omega^2*M+1i*omega*C+K;

15 % Find the mechanical impedance.

16 % X_k2Y = zeros(2,2);

17 % X_k2Y(1,1) = abs((K(1,1)-omega^2*M(1,1)+1i*omega*C(1,1))/(det(Z)));
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18 % X_k2Y(1,2) = abs((-K(1,2)+omega^2*M(1,2)-1i*omega*C(1,2))/(det(Z)));

19 % X_k2Y(2,1) = abs((-K(2,1)+omega^2*M(2,1)-1i*omega*C(2,1))/(det(Z)));

20 % X_k2Y(2,2) = abs((K(2,2)-omega^2*M(2,2)+1i*omega*C(2,2))/(det(Z)));

21 X_k2Y = abs((K-omega^2*M+1i*omega*C)/(det(Z)));
22 % Find the matrix of X_i/F_i.

23 X1_Y = k2*X_Y(1,2);

24 X2_Y = k2*X_Y(1,1);

25 fprintf(’Displacement Transmissibility for mass 1 = %.3f. \n’, X1_Y);

26 fprintf(’Displacement Transmissibility for mass 2 = %.3f. \n’, X2_Y);

27 % Find the displacement transmissibility.

28 F1_k2Y = abs(k1*(X_k2Y(1,2)-X_k2Y(1,1)));
29 F2_k2Y = abs(k2*(X_k2Y(1,1)-1/k2)-k1*(X_k2Y(1,2)-X_k2Y(1,1)));
30 fprintf(’Force Transmissibility for mass 1 = %.3f. \n’, F1_k2Y);

31 fprintf(’Force Transmissibility for mass 2 = %.3f. \n’, F2_k2Y);

32 % Find the force transmissibility.

D Code for Numeric Solution for Car Motion
D.1 Code in Numeric Response with Damper Main File

Input Matlab source for Main File:

1 % Main program (save this file as Mainchristopher.m)

2 clc; clf; clear all;
3 % Clear all the things that are remained in the before command.

4 global m1 m2 k1 k2 cc m k c % Set m, k, c as global variance.

5 m1 = 1010;

6 m2 = 76;

7 k1 = 31110;

8 k2 = 321100;

9 cc = 4850;

10 % Properties of the system.

11 m = [m1 0; 0 m2]; % Set the mass matrix.

12 c = [cc -cc; -cc cc]; % Set the damping matrix.

13 k = [k1 -k1; -k1 k1+k2]; % Set the stiffness matrix.

14 z0 = [0; 0; 0; 0];

15 % Set the initial conditions for [x1, x2, x1dot, x2dot]

16 tspan = [0:0.001:5]; % Set the t range.

17 [t, z] = ode45(’christopher’, tspan, z0);

18 % Solve the response.

19 subplot(211); % Open a subplot.

20 plot(t, z(: , 1)); % plot z1

21 xlabel(’Time (s)’); % Set the x label to Time (s).

22 ylabel(’x_1 (m)’); % Set the y label to x_1 (m).

23 subplot(212); % Open a subplot.

24 plot(t, z(: , 2)); % plot z2

25 xlabel(’Time (s)’); % Set the x label to Time (s).

26 ylabel(’x_2 (m)’); % Set the y label to x_2 (m).
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D.2 Code in Numeric Response without Damper Main File

Input Matlab source for Main File:

1 % Main program (save this file as Mainchristopher.m)

2 clc; clf; clear all;
3 % Clear all the things that are remained in the before command.

4 global m1 m2 k1 k2 cc m k c % Set m, k, c as global variance.

5 m1 = 1010;

6 m2 = 76;

7 k1 = 31110;

8 k2 = 321100;

9 cc = 0;

10 % Properties of the system.

11 m = [m1 0; 0 m2]; % Set the mass matrix.

12 c = [cc -cc; -cc cc]; % Set the damping matrix.

13 k = [k1 -k1; -k1 k1+k2]; % Set the stiffness matrix.

14 z0 = [0; 0; 0; 0];

15 % Set the initial conditions for [x1, x2, x1dot, x2dot]

16 tspan = [0:0.001:5]; % Set the t range.

17 [t, z] = ode45(’christopher’, tspan, z0);

18 % Solve the response.

19 subplot(211); % Open a subplot.

20 plot(t, z(: , 1)); % plot z1

21 xlabel(’Time (s)’); % Set the x label to Time (s).

22 ylabel(’x_1 (m)’); % Set the y label to x_1 (m).

23 subplot(212); % Open a subplot.

24 plot(t, z(: , 2)); % plot z2

25 xlabel(’Time (s)’); % Set the x label to Time (s).

26 ylabel(’x_2 (m)’); % Set the y label to x_2 (m).

D.3 Code in Numeric Response Function File

Input Matlab source for Function File:

1 function zdot = christopher(t, z)

2 global m k c k2

3 % Set m, k, c as global variance.

4 [nr, nc] = size(m);
5 % Find the size of m.

6 A = [zeros(nr, nr) eye(nr); -inv(m)*k -inv(m)*c];
7 B = [zeros(nr, nr); inv(m)];
8 F = [0; k2*0.019*sin(100/3.6/5.5*2*pi*t)];
9 zdot = A*z + B*F;
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E Simulink Solution for Car Motion
E.1 Simulink Block Diagram

The block diagram for the car motion I simulinked is shown in Figure 12. The code in the MATLAB
Function Block is shown in Appendices E.2 and E.3

Figure 12. Block Diagram for the Car Motion.

E.2 Code in Upper Function Block

Input Matlab source for Above Function Block (Fcn):

1 function y = fcn(u)

2 m1 = 1010;

3 m2 = 76;

4 k1 = 31110;

5 k2 = 321100;

6 c = 4850;

7 % Set the properties of the system.

8 y = -(c*u(2)-c*u(4)+k1*u(1)-k1*u(3))/m1;

9 % Get the expression for x1ddot.
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E.3 Code in Lower Function Block

Input Matlab source for Below Function Block (Fcn):

1 function y = fcn(u)

2 m1 = 1010;

3 m2 = 76;

4 k1 = 31110;

5 k2 = 321100;

6 c = 4850;

7 % Set the properties of the system.

8 y = (k2*u(5)-(-c*u(2)+c*u(4)-k1*u(1)+(k1+k2)*u(3)))/m2;

9 % Get the expression for x1ddot.

F Code for Minimum Displacement
Input Matlab source to find the characteristics of X1 with different k1 and c:

1 clc; clf; clear all;
2 % Clear all the things that are remained in the before command.

3 k1range = 0:100:31110;

4 crange = 0:5:4850;

5 % Set the range of k1 and c.

6 [k1, c] = meshgrid(k1range, crange);

7 % Generate the matrix of k1 and c.

8 X1 = 321100*0.019*sqrt(k1.^2+(31.73*c.^2))./...
9 sqrt((-2.487e11-7.725e5*k1).^2+(2.451e7*c).^2);

10 % Define the displacement x1.

11 figure;
12 % Open one figure.

13 mesh(k1, c, X1);

14 % Plot X1 with respect to k1 and c.

15 xlabel(’k_1 (N/m)’);

16 ylabel(’c (N\cdots/m)’);

17 zlabel(’X_1 (m)’);

18 % Set the label of the plot.

G Code for Appropriate k1 and c
Input Matlab source to find the response with appropriate k1 and c:

1 % Main program (save this file as Mainchristopher.m)

2 clc; clf; clear all;
3 % Clear all the things that are remained in the before command.

4 global m1 m2 k1 k2 cc m k c % Set m, k, c as global variance.

5 m1 = 1010;

6 m2 = 76;

7 k1 = 5000;

8 k2 = 321100;
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9 cc = 1500;

10 % Properties of the system.

11 m = [m1 0; 0 m2]; % Set the mass matrix.

12 c = [cc -cc; -cc cc]; % Set the damping matrix.

13 k = [k1 -k1; -k1 k1+k2]; % Set the stiffness matrix.

14 z0 = [0; 0; 0; 0];

15 % Set the initial conditions for [x1, x2, x1dot, x2dot]

16 tspan = [0:0.001:5]; % Set the t range.

17 [t, z] = ode45(’christopher’, tspan, z0);

18 % Solve the response.

19 subplot(211); % Open a subplot.

20 plot(t, z(: , 1)); % plot z1

21 xlabel(’Time (s)’); % Set the x label to Time (s).

22 ylabel(’x_1 (m)’); % Set the y label to x_1 (m).

23 subplot(212); % Open a subplot.

24 plot(t, z(: , 2)); % plot z2

25 xlabel(’Time (s)’); % Set the x label to Time (s).

26 ylabel(’x_2 (m)’); % Set the y label to x_2 (m).
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