
ME1020 

Mechanical vibrations

Lecture 8 

Vibration isolation



Objectives

 Explain the criteria for considering the 
severity of vibration

 Analyze vibration isolation for fixed and 
moving bases

 Describe the typical applications of 
industry vibrators in engineering 
applications



Noise & vibration

❖ Vibration is often associated with noise. 

❖ Noise levels are often described in decibel (dB) scale

❖ Decibel is originally defined as a ratio of electric powers (i.e. power 𝑃 is 

described relative to some reference value 𝑃0) by:

dB = 10 log10
𝑃

𝑃0
❖ It is now often used with various quantities. Example displacement 𝑋

with respect to 𝑋0

dB = 10 log10
𝑋

𝑋0

2

= 20 log10
𝑋

𝑋0



Human comfort
Vibration limits for human comfort (ISO 2631)

❖ Limitation curves for exposure times from 1 minute to 12 hours over 

the frequency range in which the human body has been found to be 

most sensitive, namely 1 Hz to 80 Hz.



Vibration criteria

❖ Criteria can be based on amplitudes of displacement, velocity, and 

acceleration as well as time of exposure

❖ The severity of the vibration will depend on the system (e.g. consider a 

car and a CD drive as shown): both have the same natural frequency 

𝜔𝑛 = 20 rad/s; damping ratio 𝜁 = 0.2; and damped natural frequency 

𝜔𝑑 = 19.5959 rad/s; their responses may have the same form but the 

magnitudes can be different 

Turntable

m=1 kg

k=400 N/m

c=8 Ns/m

m=1000 kg

k=400,000 N/m

c=8000 Ns/m

Car



Vibration criteria

Consider the responses are simple harmonic motions:

𝑥 𝑡 = 𝑋 sin𝜔 𝑡
𝑣 𝑡 = ሶ𝑥 𝑡 = 𝜔𝑋 cos𝜔 𝑡 = 2𝜋𝑓𝑋 cos𝜔 𝑡

𝑎 𝑡 = ሷ𝑥 𝑡 = −𝜔2𝑋 sin𝜔 𝑡 = −4𝜋2𝑓2𝑋 sin𝜔 𝑡
❖ Amplitude of velocity:

𝑣max = 2𝜋𝑓𝑋
ln(𝑣max) = ln 2𝜋𝑓 + ln𝑋

❖ Amplitude of acceleration:

𝑎max = −4𝜋2𝑓2𝑋 = −2𝜋𝑓𝑣max
ln(𝑎max) = − ln 2𝜋𝑓 − ln(𝑣max)
ln(𝑣max) = − ln(𝑎max) − ln 2𝜋𝑓

❖When 𝑋 is constant, ln(𝑣max) varies linearly with ln(2πf)

❖When 𝑎max is constant, ln(𝑣max) varies linearly with ln 2𝜋𝑓
❖ These are shown as a nomograph



❖ Example: 

vibration severity 

of whole building 

vibration (ISO 

DP 4866)

❖ Every point 

denotes a specific 

sinusoidal 

vibration (i.e. 

variations of 

displacement, 

velocity and 

acceleration 

amplitudes with 

respect to the 

frequency 





Vibration isolation

Vibratory forces generated by machines are sometimes unavoidable.

However, their effects of the vibration can often be minimized by

proper isolator design

An isolation system attempts to:

➢ Protect an object from excessive vibration transmitted from its

supporting structure

➢ Prevent transmission of vibratory forces generated by machines to

surroundings

❖Vibration isolators are mainly made up of springs combined with

dampers and/or inertia elements

❖ Isolator is mainly inserted between the vibrating mass and vibration

source to reduce the response



Isolation examples



Isolation examples

Quiet 

Design

Noisy

Design



Isolation examples



Isolation examples

“soft” spring

Non-isolated Isolated



Industry isolators



Industry isolators





Isolation problems

Two main types of isolation problems: 
1. Fixed base or rigid foundation
2. Moving base
❖ The effectiveness of the isolation is given in terms of the transmissibility, 

which can be displacement transmission ratio or force transmission ratio:
▪ Fixed base force transmission ratio

𝐹𝑇
𝐹0

=
1 + (2𝜁𝑟)2

(1 − 𝑟2)2 + (2𝜁𝑟)2

▪ Moving base force transmission ratio

𝐹𝑇
𝑘𝑌

= 𝑟2
1 + (2𝜁𝑟)2

(1 − 𝑟2)2 + (2𝜁𝑟)2

▪ Moving base displacement transmission ratio

𝑋

𝑌
=

1 + (2𝜁𝑟)2

(1 − 𝑟2)2 + (2𝜁𝑟)2



Fixed base

• A resilient member is placed placed between the vibrating machine and 

rigid foundation to reduce the vibration and its transmission

• Resilient member is modeled as a spring k and a dashpot c

• The force transmission ratio is

𝐹𝑇
𝐹0

=
1 + (2𝜁𝑟)2

(1 − 𝑟2)2 + (2𝜁𝑟)2



Fixed base

𝑇𝑟 =
𝐹𝑇
𝐹0

=
1 + (2𝜁𝑟)2

(1 − 𝑟2)2 + (2𝜁𝑟)2

Note: for rotating imbalanced

𝑇𝑟 =
𝐹𝑇

𝑚0𝑒𝜔
2
=

1 + (2𝜁𝑟)2

(1 − 𝑟2)2 + (2𝜁𝑟)2

❖ At 𝑇𝑟 = 1, 𝑟 = Τ𝜔 𝜔𝑛 = 2

❖ For 𝑟 > 2 and small 𝜁

𝑇𝑟 ≈
1

𝑟2 − 1



Fixed base

Isolation with little damping: 

no isolation if  < n

Isolation with little damping: 

danger of vibration reinforcement 

if  = n

Isolation with damping: 

no isolation if  = n

Isolation with little damping: 

good isolation if  > n

𝑇𝑟 =
1

𝑟2 − 1
for 𝑟 > 2 and small 𝜁



Fixed base

Focus on isolation with little (negligible) damping 

with 𝜔 > 𝜔𝑛 or 𝑟 > 2 where

𝑇𝑟 =
1

𝑟2 − 1
❖ For an undamped system:

𝑘𝛿𝑠𝑡 = 𝑚𝑔

where 𝛿𝑠𝑡 is the static deflection

❖ Hence

𝑘

𝑚
= 𝜔𝑛

2 =
𝑔

𝛿𝑠𝑡
and 𝑟2 =

𝜔2

𝜔𝑛
2 =

(2𝜋𝑓)2

Τ𝑔 𝛿𝑠𝑡
=

(2𝜋𝑓)2𝛿𝑠𝑡

𝑔

❖ For 𝑟 > 2 and small 𝜁

𝑇𝑟 =
1

𝑟2 − 1
=

1

(2𝜋𝑓)2 Τ𝛿𝑠𝑡 𝑔 − 1



Fixed base

For the fixed base system, we can specify an isolator

with very little damping with frequency ratio 𝑟 > 2

and small 𝜁 such that

𝑇𝑟 =
1

(2𝜋𝑓)2 Τ𝛿𝑠𝑡 𝑔 − 1

The isolator will reduce the force transmission when

𝜔 > 𝜔𝑛

We will next examine the steady state amplitude of the

isolated mass



Fixed base

The steady state amplitude X of the isolated mass “m” is 

given by

𝑋 =
Τ𝐹𝑜 𝑘

1 − 𝑟2 2 + 2𝜍𝑟 2

Note that when the mass in increased, the amplitude is  

reduced. This can be done by placing the isolated mass 

𝑚 on a large mass “𝑀”. However, the stiffness “k” then 

must be increased to keep the ratio

Τ𝑘 𝑚 +𝑀 = constant
so that the natural frequency and transmission ratio is 

constant



Fixed base

❖ The concept of reducing the steady state vibration amplitude by placing 

the isolated mass 𝑚 on a large mass “𝑀” is shown

❖ Note that the stiffness original “k” must be increased to keep the natural 

frequency and the transmission ratio unchanged

The concept is similar to the situation of knocking 

on a thin door produces more sound than knocking 

on thick wall, i.e. noise source should be mounted 

on heavy or rigid bases



Fixed base

Procedure for fixed base isolation:

❖ Select the stiffness of the isolation system such that

𝑟 =
𝜔

𝜔𝑛
> 2

❖ Minimize the damping of the isolation system

❖ Frequency increases and decreases should be fast enough to avoid 

transient oscillations at resonance due to low damping

❖ Be aware of excessive static deflection and lateral instability

❖ Use “inertia blocks” if appropriate



Example 1

A hard disk, of mass 1 kg, generates an excitation force at a frequency 

of 3Hz. If it is supported on a base through a rubber mount, determine 

the stiffness of the rubber mount to reduce the vibration displacement 

transmitted to the base by 80%.

Assume negligible 𝜁 and design for > 2

𝑇𝑟 = 0.2 =
1

(2𝜋𝑓)2 Τ𝛿𝑠𝑡 𝑔 − 1

𝛿𝑠𝑡 =
𝑔

(2𝜋𝑓)2
1

0.2
+ 1 = 0.1656

But 𝛿𝑠𝑡 =
𝑚𝑔

𝑘
or    𝑘 =

𝑚𝑔

𝛿𝑠𝑡
= 59.2 N/m



Example 1

At resonance 𝑟 = 1

𝑋 =
𝑟2 Τ(𝑚0𝑒) 𝑚

(1 − 𝑟2)2 + (2𝜁𝑟)2
=

Τ(𝑚0𝑒) 𝑚

2𝜁

Given 𝜁 = 0.05, 𝑚0 = 0.1𝑚 and measured deflection at resonance to 0.1 m.

Therefore

0.1 =
Τ(0.1𝑚𝑒) 𝑚

2𝜁

𝑒 = 2𝜁 = 0.1 m;

Desirable to change mass to 𝑚 + Δ𝑚 so that 𝑋 = 0.01 m; i.e.

0.01 =
Τ(0.1𝑚𝑒) (𝑚+Δ𝑚)

2𝜁
or   𝑚+ Δ𝑚 = 10𝑚

Δ𝑚 = 9𝑚 (i.e. increase mass by 9 times)



Moving base

❖ The isolator is to protect the system against motion of its foundation

❖ For base excitation:

• Force transmission is  𝑇𝑟 =
𝐹𝑇

𝑘𝑌
= 𝑟2

1+(2𝜁𝑟)2

(1−𝑟2)2+(2𝜁𝑟)2

▪ Moving base displacement transmission ratio  𝑇𝑟 =
𝑋

𝑌
=

1+(2𝜁𝑟)2

(1−𝑟2)2+(2𝜁𝑟)2



Example 2

The seat of a helicopter, with the pilot, weights 1000N and is found to have a 

static deflection of 10 mm under self-weight. The vibration of the rotor is 

transmitted to the base of the seat as harmonic motion with frequency 4 Hz and 

amplitude 0.2 mm (assume no damping).

a) What is the level of vibration felt by the pilot?

b) How can the seat be redesigned to reduce the effect of vibration?

❖ Mass 𝑚 = Τ1000 9.81 = 101.94 kg

❖ Spring constant 𝑘 = Τ𝑚𝑔 𝛿𝑠𝑡 = Τ1000 0.01 = 10000 N/m

❖ Natural frequency 𝜔𝑛 = Τ𝑘 𝑚 = 31.32 rad/s or 4.985 Hz

❖ Frequency ratio 𝑟 = Τ𝜔 𝜔𝑛 = 0.8

❖ Amplitude of vibration felt by pilot 𝑋 =
𝑌

1−𝑟2
=

0.2

1−0.82
= 0.5616 mm;

❖ Max velocity 𝑣max = 2𝜋𝑓𝑋 = 14.11 mm/s;

❖ Max acceleration 𝑎max = 4𝜋2𝑓2𝑋 = 0.355 mm/s2;



Example 2
• Max velocity 𝑣max = 14.11 mm/s 

and max acceleration 𝑎max =
0.355 mm/s2 at 4 Hz are not 

acceptable for a comfortable ride.

• Bring 𝑎max down to 0.01 m/s2

• For 𝑎max = 0.01 = 2𝜋𝑓 2𝑋, we 

need 𝑋 = 0.01583 mm;
𝑋

𝑌
=
0.01583

0.2
= ±

1

1 − 𝑟2

• We get 𝑟 = 3.69

• 𝜔𝑛 =
𝜔

3.69
=

8𝜋

3.6923
= 6.807 =

𝑘

𝑚

• For 𝑚 = 101.94 kg, we get 

𝑘 = 4723 N/m

Either use softer material for seat or 

increase mass of seat



Example 3

A 40 kg instrument is used on a table that vibrates due to nearby machinery.

The principle frequency component is 1100 rpm. Determine whether or not

the isolator A whose load – deflection curve is shown below can used at each

of the four corners of the instrument so that no more than 20% of table

motion is transmitted to the instrument. The damping ratio for isolator is

0.02.



Example 3

Given displacement transmission ratio
𝑋

𝑌
=

1+ 2𝜍𝑟 2

1−𝑟2 2+ 2𝜍𝑟 2 = 0.2

Given damping ratio 𝜁 = 0.02, therefore

1+ 0.04𝑟 2

1−𝑟2 2+ 0.04𝑟 2 = 0.2 which reduces to

𝑟4 − 2.0384𝑟2 − 24 = 0
❖ Solve the equation

𝑟2 =
− −2.0384 ± −2.0384 2 − 4 × (−24) × 1

2 × 1
𝑟2 = 6.023 or   𝑟 = 2.454 = Τ𝜔 𝜔𝑛

❖ The critical input frequency is 1100 rpm

❖ Natural frequency 𝜔𝑛 = Τ𝜔 𝑟 = Τ2𝜋(1100 ÷ 60) 2.454 = 47 rad/s



Example 3

150

98

1.3

Stiffness of isolators A and B

The static deflection of the isolator is

𝛿𝑠𝑡 =
𝑔

𝜔𝑛
2 =

9.81

472
= 4.44 × 10−3m

The total mass is 40 kg and the load 

on each of the isolator at the four 

corners will be 𝐹 =
40×9.8

4
= 98 N

From the figure, the safe static load 

for this isolator at 4.44 mm is 150 N

To maintain the 𝑇𝑟 the isolator must 

be mounted on a block weighting 

4(150-98) = 208 N and place the 

isolator between the block and the 

table



Vibration isolation



Vibration isolation


