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Mechanical vibrations

Lecture 6 

Rotating imbalance



Objectives

 Analyze the response of 1DOF vibration 
system to rotating imbalanced mass 
including the amplitude ratio, phase shift, 
and force transmission

 Apply the rotating imbalanced mass 
analysis to vibration isolation

 Describe the characteristics of whirling 
including steady state amplitudes and 
critical speed



Introduction

❖Rotating machines are not always perfectly balanced, e.g. your car’s 

wheels 

❖Rotating machine imbalance can be due to manufacturing or wear 

(e.g. turbine engine with cracked turbine blades)

❖Rotating imbalance leads to harmonic forces and is one of the main 

causes of machine vibration

❖A simple model of a system with an unbalance mass rotating at 

constant angular velocity  at a radius “e” is shown



Introduction

Let 𝑚 = total mass of machine (including 𝑚0) 

❖ 𝑚0 = mass imbalanced

❖ 𝑒 = eccentricity

𝜔 = rotation frequency

Note that 𝑥 = 𝑒 sin(𝜔𝑡) and ሷ𝑥 = −𝑒𝜔2 sin(𝜔𝑡)

𝑅𝑥 = 𝑚0 ሷ𝑥 = −𝑚0𝑒 𝜔
2 sin(𝜔𝑡)

𝑅𝑦 = 𝑚0 ሷ𝑦 = −𝑚0𝑒 𝜔
2 cos(𝜔𝑡)

❖ Assume that the mass is held in place along y-axis

❖ The force acting against the mass will be −𝑅𝑥
❖ The equation of motion is

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 𝑚0𝑒 𝜔
2 sin(𝜔𝑡)



Rotating imbalance

For harmonic force excitation: 𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 𝐹0 sin(𝜔𝑡)

❖ Steady state response is  𝑥(𝑡) = 𝑋 sin(𝜔𝑡 − 𝜃)

where 𝑋 =
𝐹0

[𝑘−𝑚𝜔2]2+(𝑐𝜔)2
and     𝜃 = tan−1

𝑐𝜔

𝑘−𝑚𝜔2

For a rotating imbalance mass:

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 𝑚0𝑒 𝜔
2 sin(𝜔𝑡)

❖ Steady state response is  𝑥(𝑡) = 𝑋 sin(𝜔𝑡 − 𝜃)

where 𝑋 =
𝑚0𝑒 𝜔2

[𝑘−𝑚𝜔2]2+(𝑐𝜔)2
=

𝑟2 Τ(𝑚0𝑒) 𝑚

(1−𝑟2)2+(2𝜁𝑟)2

Phase shift   𝜃 = tan−1
𝑐𝜔

𝑘−𝑚𝜔2 = tan−1
2𝜁𝑟

1−𝑟2



Amplitude ratio

The amplitude ratio for a rotating imbalance system is defined as

𝑋

Τ(𝑚0𝑒) 𝑚
=

𝑟2

(1 − 𝑟2)2 + (2𝜁𝑟)2



Amplitude ratio

The amplitude ratio shows the following characteristics:

1. At very high speeds (𝜔 → large ⟹ 𝑟 → large), Τ𝑚𝑋 𝑚0𝑒 → 1 and 

the effect of damping is negligible

2. For 0 < 𝜁 < Τ1 2, the maximum of Τ𝑚𝑋 𝑚0𝑒 occurs at

𝑑

𝑑𝑟

𝑚𝑋

𝑚0𝑒
= 0, i.e. at  𝑟 =

1

1−2𝜁2

The maximum occurs to the right of the resonance value of r = 1

3. For  > Τ1 2, the amplitude ratio does not attain a maximum but 

grows from 0 at r = 0 to 1 at r → ∞ 



Phase shift

The phase shift for a rotating imbalance system is

𝜃 = tan−1
2𝜁𝑟

1 − 𝑟2



Example 1

A machine has a rotating imbalance. At resonance, the maximum 
deflection is measured to be 0.1 m. The damping ratio is estimated to 
be 0.05 and the out-of-balance mass, 𝑚0, is estimated to be 10% of the 
total mass. Estimate the eccentricity radius e and determine how much 
mass should be added (uniformly) to the system to reduce the 
deflection at resonance to 0.01 m.



Example 1

At resonance 𝑟 = 1

𝑋 =
𝑟2 Τ(𝑚0𝑒) 𝑚

(1 − 𝑟2)2 + (2𝜁𝑟)2
=

Τ(𝑚0𝑒) 𝑚

2𝜁

Given 𝜁 = 0.05, 𝑚0 = 0.1𝑚 and measured deflection at resonance to 0.1 m.

Therefore

0.1 =
Τ(0.1𝑚𝑒) 𝑚

2𝜁

𝑒 = 2𝜁 = 0.1 m;

Desirable to change mass to 𝑚 + Δ𝑚 so that 𝑋 = 0.01 m; i.e.

0.01 =
Τ(0.1𝑚𝑒) (𝑚+Δ𝑚)

2𝜁
or   𝑚+ Δ𝑚 = 10𝑚

Δ𝑚 = 9𝑚 (i.e. increase mass by 9 times)



Force transmission

k c

kx cv

❖ With vibrating machinery, forces exerted 

on the supporting structures can become 

large near resonance

❖ Equipment is thus constructed on isolating 

mounts (springs and dashpots to suppress 

the resonance)

❖ Steady state displacement is

𝑥(𝑡) = 𝑋 sin(𝜔𝑡 − 𝜃)

❖ Force transmitted is

𝐹𝑇 = 𝑘𝑥 + 𝑐 ሶ𝑥

𝐹𝑇 = 𝑘𝑋 sin(𝜔𝑡 − 𝜃) + 𝑐𝜔𝑋 cos(𝜔𝑡 − 𝜃)



Force transmission

Force transmitted is 

𝐹𝑇 = 𝑘𝑋 sin(𝜔𝑡 − 𝜃) + 𝑐𝜔𝑋 cos(𝜔𝑡 − 𝜃)

❖ The sine and cosine can be combined and the maximum amplitude of the 

transmitted force is

𝐹𝑇 = 𝑘𝑋 2 + 𝑐𝜔𝑋 2 = 𝑘𝑋 1 + Τ2𝜁𝜔 𝜔𝑛
2

❖ Substitute 𝑋 =
𝑟2 Τ(𝑚0𝑒) 𝑚

(1−𝑟2)2+(2𝜁𝑟)2

𝐹𝑇 =
𝑟2 Τ𝑚0𝑒 (𝑘 𝑚) 1 + 2𝜁𝑟 2

(1 − 𝑟2)2 + (2𝜁𝑟)2

𝐹𝑇 =
𝑚0𝑒𝜔

2 1 + 2𝜁𝑟 2

(1 − 𝑟2)2 + (2𝜁𝑟)2



Vibration isolation

The force transmitted from the rotating unbalanced mass 

through the isolator consisting of the spring and damper is  

𝐹𝑇 =
𝑚0𝑒𝜔

2 1 + 2𝜁𝑟 2

(1 − 𝑟2)2 + (2𝜁𝑟)2

The force transmissibility of the isolator is defined as

𝑇𝑟 =
𝐹𝑇

𝑚0𝑒𝜔
2
=

1 + (2𝜁𝑟)2

(1 − 𝑟2)2 + (2𝜁𝑟)2

The reduction in force transmissibility is defined as 

𝑅 = 1 − 𝑇𝑟



Example 2

Determine the two possible values of the equivalent spring stiffness k for the 

mounting to permit the amplitude of the force transmitted to the fixed 

mounting due to the imbalance to be 1500 N at a speed of 1800 rpm. Given: 

total mass of the device 𝑚 = 10 kg, unbalanced mass 𝑚0 = 1 kg; and 

eccentricity 𝑒 = 12 mm. Assume negligible damping



Example 2

Note: negligible damping and 𝜁 = 0,

Force transmitted is 1500 N at a speed of 1800 rpm;

But force transmitted is 𝐹𝑇 =
𝑚0𝑒𝜔

2 1+ 2𝜁𝑟 2

(1−𝑟2)2+(2𝜁𝑟)2
=

𝑚0𝑒𝜔
2

1−𝑟2

Therefore 1 − 𝑟2 =
𝑚0𝑒𝜔

2

1500

❖ Forcing frequency 𝜔 = 1800 × 2𝜋 ÷ 60 rad/s

❖ Eccentricity 𝑒 = 12 mm and total unbalanced mass 𝑚0 = 2 kg

1 − 𝑟2 =
𝑚0𝑒𝜔

2

1500
= 0.568

𝑟2 − 1 = 0.568 or     1 − 𝑟2 = 0.568
𝑟2 = 1.568 or   𝑟2 = 0.432

❖ Natural frequency 𝜔𝑛
2 = Τ𝑘 𝑚 and 𝑟2 = Τ𝜔2 𝜔𝑛

2 = Τ𝑚𝜔2 𝑘
❖ Τ𝑚𝜔2 𝑘 = 1.568 gives 𝑘 = Τ𝑚𝜔2 1.568 = 2.27 × 105 N/m

❖ Τ𝑚𝜔2 𝑘 = 0.432 gives 𝑘 = Τ𝑚𝜔2 0.432 = 8.23 × 105 N/m



Example 2

Note: Device total mass 𝑚 = 10 kg

❖ Forcing frequency 𝜔 = 188.5 rad/s

❖ If we choose the softer spring 𝑘 = 2.27 × 105 N/m

Natural frequency 𝜔𝑛 = Τ𝑘 𝑚 = 150.7 rad/s; and

𝑟 = Τ𝜔 𝜔𝑛 = 1.25

❖ If we choose the stiffer spring 𝑘 = 8.23 × 105 N/m

Natural frequency 𝜔𝑛 = Τ𝑘 𝑚 = 286.9 rad/s; and

𝑟 = Τ𝜔 𝜔𝑛 = 0.657

❖ We can choose either a stiffer spring and run the machine 

BELOW the natural frequency or we can choose a softer spring 

and run the machine ABOVE the natural frequency



Whirling

In machines with rotating shaft, it is possible that the rotating shaft can bend. 

The resulting motion of the off-center mass is called whirling



Whirling

m



O
P
G

x
R

Terminology:

❖ O - center of rotation (of unbend shaft)

❖ P - Geometric center (center of rotation of bend shaft)

❖ 𝑥 - deflection of shaft

❖ G - center of gravity where mass 𝑚 is located

❖ R – eccentricity

Note: For perfect balancing, the center of gravity has to coincide 

with the geometric center



Whirling

Force balance:  𝑚 ሷԦ𝑟 = −𝑘𝑥 Ƹi − 𝑘𝑦 Ƹj − 𝑐 ሶ𝑥 Ƹi − 𝑐 ሶ𝑦 Ƹj
Ԧ𝑟 = 𝑥 + 𝑅 cos𝜔 𝑡 Ƹi + 𝑦 + 𝑅 sin𝜔 𝑡 Ƹj

ሷԦ𝑟 = ሷ𝑥 − 𝑅𝜔2 cos𝜔 𝑡 Ƹi + ሷ𝑦 − 𝑅𝜔2 sin𝜔 𝑡 Ƹj
𝑚 ሷ𝑥 − 𝑚𝑅𝜔2 cos𝜔 𝑡 + 𝑐 ሶ𝑥 + 𝑘𝑥 Ƹi + 𝑚 ሷ𝑦 − 𝑚𝑅𝜔2 sin𝜔 𝑡 + 𝑐 ሶ𝑦 + 𝑘𝑦 Ƹj = 0

Note: m = mass of the rotor; r = position vector from O to CG; R = eccentricity;

k = bending stiffness of the shaft; and c = external damping of the shaft



Whirling

Equation of motion of the whirling shaft:  

𝑚 ሷ𝑥 − 𝑚𝑅𝜔2 cos𝜔 𝑡 + 𝑐 ሶ𝑥 + 𝑘𝑥 Ƹi + 𝑚 ሷ𝑦 − 𝑚𝑅𝜔2 sin𝜔 𝑡 + 𝑐 ሶ𝑦 + 𝑘𝑦 Ƹj = 0
Note: there are 2 equations:

𝑚 ሷ𝑥 − 𝑚𝑅𝜔2 cos𝜔 𝑡 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 0
𝑚 ሷ𝑦 − 𝑚𝑅𝜔2 sin𝜔 𝑡 + 𝑐 ሶ𝑦 + 𝑘𝑦 = 0

❖ These equations can be rewritten as

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 𝑚𝑅𝜔2 cos𝜔 𝑡
𝑚 ሷ𝑦 + 𝑐 ሶ𝑦 + 𝑘𝑦 = 𝑚𝑅𝜔2 sin𝜔 𝑡

❖ The steady state solutions for these are respectively

𝑥(𝑡) = 𝑋 cos(𝜔𝑡 − 𝜙)
𝑦(𝑡) = 𝑌 sin(𝜔𝑡 − 𝜙)

where

𝑋 = 𝑌 =
𝑅 𝑟 2

1−𝑟2 2+ 2𝜍𝑟 2
and  𝜙 = tan−1

2𝜍𝑟

1−𝑟2



Whirling

Note that 𝜃 in the diagram is given by

tan 𝜃 =
𝑦(𝑡)

𝑥(𝑡)
=
sin 𝜔𝑡 − 𝜙

cos 𝜔𝑡 − 𝜙
tan 𝜃 = tan 𝜔𝑡 − 𝜙

𝜃 = 𝜔𝑡 − 𝜙
ሶ𝜃 = 𝜔

❖ The whirling velocity is the same 

as the speed with which the disk 

rotates about the shaft. This is 

called synchronous whirl

❖ In the diagram, distance “OP” is

𝐷 = 𝑋2 + 𝑌2 where

𝑋 = 𝑌 =
𝑅 𝑟 2

1 − 𝑟2 2 + 2𝜍𝑟 2



Whirling

𝑋 =
𝑅 𝑟 2

1 − 𝑟2 2 + 2𝜍𝑟 2

Critical speed is at 𝑟 = 1 where

𝜔 = 𝜔𝑟 = 𝜔𝑛 = Τ𝑘 𝑚



Whirling



Example 3

A rotor having a mass of 5 kg is mounted midway on a 1 cm diameter shaft 

support at the ends by two bearings. The bearing span is 40 cm. Because of 

certain manufacturing inaccuracies, the center of gravity of the disc is 0.02 

mm away from the geometric center of the rotor. If the system rotates at 3000 

rpm, find the amplitude of steady state vibrations and dynamic force 

transmitted to the bearings. Neglect damping and take E = 1.96 x 1011 N/m2.

❖ The moment of inertia of a shaft with diameter 𝑑 = 0.01 m is

𝐼 =
𝜋𝑑4

64
= 4.9 × 10−10 m4;

❖ The simply supported shaft of length 𝐿 = 0.4 m loaded at mid span can be 

represented by an equivalent spring (where 𝑎 = 𝑏 = Τ𝐿 2):

𝑘𝑒𝑞 =
3𝐸𝐼(𝑎+𝑏)

𝑎2𝑏2
=

48𝐸𝐼

𝐿3
= 72.2 × 103 N/m



❖ Forcing frequency 𝜔 = 3000 × 2𝜋 ÷ 60 = 314.2 rad/s; 

❖ Mass 𝑚 = 5 kg and natural frequency 𝜔𝑛 = Τ𝑘 𝑚 = 120.2 rad/s;

❖ Frequency ratio 𝑟 = Τ𝜔 𝜔𝑛 = 2.615;

❖ Given eccentricity 𝑅 = 0.02 × 10−3 m;

❖ Amplitude of the steady state vibration with no damping:

𝑋 = 𝑌 =
𝑅 𝑟 2

1−𝑟2 2+ 2𝜍𝑟 2
=

𝑅 𝑟 2

1−𝑟2
= 0.023 mm

❖ The dynamic force transmitted to the bearings 

𝐹 = 𝑚(𝑋 + 𝑅)𝜔2 = 5 ×
0.023 + 0.02

1000
× 314.162

𝐹 = 21.2 N;

𝐹for each bearing =
21.2

2
= 10.6 N

Example 3

O P G

x R



Design example

The schematic diagram of a Francis 
water turbine is shown. Water flows 
from A into the blades B and down 
into the tail race C. The rotor has a 
mass of 250 kg and an unbalance 
(m0e) of 5kg-mm. The radial clearance 
between the rotor and the stator is 5 
mm. The turbine operates in the speed 
range 600 to 6000 rpm. The steel shaft 
carrying the rotor can be assumed to 
be clamped at the bearings. Determine 
the diameter of the shaft so that the 
rotor is always clear of the stator at all 
the operating speeds of the turbine. 
Assume damping to be negligible. 
Take E = 2 x 1011 Pa.



Design example

❖ The input frequency ranges from 600 to 6000 rpm or from

ω1 = 600 × 2π ÷ 60 = 62.84 rad/s and to

𝜔2 = 6000 × 2𝜋 ÷ 60 = 628.4 rad/s and

❖ The rotor mass 𝑚 = 250 kg; Natural frequency is

𝜔𝑛 = Τ𝑘 𝑚 = 0.0632 𝑘 rad/s

❖ The frequency ratio ranges from 

𝑟1 = Τω1 𝜔𝑛 = Τ994 𝑘 and to

𝑟2 = Τω2 𝜔𝑛 = Τ9940 𝑘;

❖ Negligible damping 𝜁 = 0; Note that the clearance between the rotor 

and the stator is 5 mm and the steady state amplitude response should 

not exceed this value



Design example

❖ Steady state response with 𝜁 = 0:

𝑋 =
𝑟2 Τ(𝑚0𝑒) 𝑚

(1 − 𝑟2)2 + (2𝜁𝑟)2
=
𝑟2 Τ(𝑚0𝑒) 𝑚

1 − 𝑟2

❖ Given 𝑚0𝑒 = 5 × 10−3 kg-m;

❖ At 𝑟1 = Τ994 𝑘:  𝑋 = 0.005 =
𝑟1
2 Τ(𝑚0𝑒) 𝑚

1−𝑟1
2

250 =
𝑟1
2

1 − 𝑟1
2 =

994 2

𝑘 − 994 2

250𝑘 = 994 2 + 250 994 2

𝑘 = 99.2 × 104 N/m



Design example

❖ At 𝑟2 = Τ9940 𝑘:  𝑋 = 0.005 =
𝑟2
2 Τ(𝑚0𝑒) 𝑚

1−𝑟2
2

250 =
𝑟2
2

1 − 𝑟2
2 =

9940 2

𝑘 − 9940 2

250𝑘 = 9940 2 + 250 9940 2

𝑘 = 99.2 × 106 N/m

❖ The rotor and shaft can be modelled as a 

cantilever beam with end load. The 

equivalent spring constant is

𝑘𝑒𝑞 =
3𝐸𝐼

𝐿3

𝐸 = 2 × 1011 Pa and length 𝐿 = 2 m



Design example

❖Moment of inertia for a shaft is 

𝐼 =
𝜋𝑑4

64
m4;

𝑘𝑒𝑞 =
3𝐸𝐼

𝐿3
=
3𝐸

𝐿3
𝜋𝑑4

64

❖ The diameter is given by 

𝑑4 = 𝑘𝑒𝑞
64𝐿3

3𝜋𝐸
❖ For 𝑘 = 99.2 × 104 N/m, diameter 𝑑 = 128 mm;

❖ For 𝑘 = 99.2 × 106 N/m, diameter 𝑑 = 405 mm;

Select smaller diameter and check the result



Design example

For 𝑘 = 99.2 × 104 N/m, diameter 𝑑 = 128 mm;

❖ Natural frequency is 𝜔𝑛 = 0.0632 𝑘 = 62.95 rad/s

❖ Frequency ratio at ω1 = 62.84 rad/s is 𝑟1 = Τ994 𝑘 = 0.998

𝑋 =
𝑟1
2 Τ(𝑚0𝑒) 𝑚

1−𝑟1
2 = 0.005 m;

❖ Frequency ratio at ω2 = 628.4 rad/s is 𝑟2 = Τ𝜔2 𝜔𝑛 =9.98

𝑋 =
𝑟2
2 Τ(𝑚0𝑒) 𝑚

1−𝑟2
2 = 0.00002 m;

❖ Therefore the shaft diameter of 128 mm is adequate to limit the steady 

state vibration amplitude to within 0.005 m. Hence select shaft 

diameter as 128 mm


