ME1020

Mechanical vibrations

Lecture 4

Response to harmonic excitation (1DOF
system)
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Objectives

Derive the 1DOF vibration system model
subjected to harmonic excitation using
Lagrange’s equation

Analyze the response of 1DOF undamped
vibration system to harmonic excitation

Analyze the response of 1DOF damped
vibration system to harmonic excitation

Determine the steady state response of
1DOF system in terms of amplitude ratio
and phase shift



Introduction

% In free vibrations, initial conditions were used to excite the system

¢ In forced vibrations, external energy is applied to “excite” the system

»» The external excitation can be supplied through an applied oscillating
force, which may be harmonic, non harmonic but periodic, non periodic,
or random in nature.

% The external excitation encountered in engineering systems is commonly
produced by:

= Rotating machines, reciprocating machines, etc.

= Excitation by another vibrating system

= Excitation by natural forces (i.e. earthquake, vortex shedding)

% Harmonic response results when the system responses to a harmonic

excitation
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Introduction

Harmonic excitations can be:
» Harmonic force
» Harmonic displacement |

o
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Harmonic force

Harmonic force excitation can be
modeled with a sine or cosine
function:
F = F, cos( wt)
where
“* wls the forcing function
frequency in rad/s
% F, is the forcing function
amplitude in N




Lagrange’s equation

In terms of generalized coordinate g, the Lagrange’s equation for a single DOF
system subject to a generalized force has the form

d (0T aT oD N au
dt \dq aq dg dq

= T = Kinetic energy

= U = Potential energy

= D = Rayleigh’s damping (or dissipation) function

= (= generalized coordinate that completely describe the dynamical system
= Q=F" 2—2 + M- ’;—“; (note dot product) generalized force for the |

bodies

= [; and M, are the vector representation of the external applied forces and
moments on the Ith body, respectively; r; and w; are the position and
angular velocity vectors due to F; and M; respectively



Lagrange’s equation
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Generalized coordinate g = x
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Lagrange’s equation

k —» X
P Generalized force
1 In = TG 05O
d - F(t) o App]y Lagrange’s equation:
d (0T oT 0D 0U
E(a_q>_aq+aq+aq = ¢

d . .
E(mx)+cx+kx=F(t)
mx + cx + kx = F(t)



Harmonic excitation: undamped

Consider the usual spring-mass system with applied force F(t) = F, cos(wt):

Undamped system under harmonic excitation:
mx + kx = F, cos(wt)
The equation can also be expressed as:

.k Fo
! Equilibrium Xt —X= ECOS(“)’:)
L F, tos(wt) X+ w2x = f, cos(wt)

< Natural frequency w, = v k/m

. . E
< Normalized force amplitude f, = EO



Harmonic excitation: undamped

The undamped system subject to harmonic excitation:
¥+ wix = fy cos(wt)
¢+ The solution of the equation has two parts:
x(t) = (complementary solution) + {particular solution}

» A complementary solution for the homogenous equation for F(t) = 0
A particular solution irrespective of the free damped-vibration for
F(t) = F, cos(wt)

» ForFt) =0= i+ w2x=0
= Complementary solution has the form
xc(t) = Acos(w,t + @)

= Which can be rewritten as x.(t) = A sin( w,t) + A, cos( w,t)
= A, and A, will be determined from the initial conditions x, and v, later
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Harmonic excitation: undamped

< For F(t) = Fy cos(wt) = & + w2x = f, cos(wt)
= The particular solution is assumed to be related to the forcing function:
xp(t) = X cos( wt)
— Frequency will be the same with forcing function frequency
— Magnitude of response may be different from the forcing function
and X is the amplitude of the steady state response
xp(t) = —wXsin(wt) and %p(t) = —w?X cos( wt)
Substituting these into the differential equation ¥ + w2x = f;, cos( wt):
—w?X cos(wt) + wzX cos(wt) = f, cos( wt)
—w?X + wiX = f

= Particular solution is xp (t) = 202
2_



Harmonic excitation: undamped

x(t) = xc(t) + x,(t) = Ay sin(wyt) + A, cos(wpt) + — Jo > cos(wt)

n
x(t) = wyAq cos(wyt) — wyA, sin(wy,t) — 2 sin( wt)
n
= Attimet =0, x(0) = x,
fo
Xg = Ay +
07 72 T w2 — 2
fo
Ay = xg —
2 0 w?— w?
= Attimet =0, x(0) = v,
Vo = (,()nAl or Al = Z_O

+» The total solution is

%
x(t) = —Osin(a)nt) + (xo - — Jo 2) cos(wpt) +— Jo >
Wy, w5 — W w5 — W

cos( wt)
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Harmonic excitation: undamped

For an undamped 1DOF system subject to harmonic excitation:
mx + kx = F, cos(wt)

This can be written as
X + wix = fy cos(wt)

The total solution is:

Vo . fo
xX(t) = —sin( w,t) + | xop — cos( w,t) +
() W,y (n) (0 wrzl_w2> (n) %

or can also be written as

Note: harmonic terms with 2 different frequencies but not defined for w = w,



() 4 Response for w < w,

Response for w approaches w,,

» If wclose to w,, then beating occurs
« Beat frequency Is wy, = w,, — @

.l‘{f} 4
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Harmonic excitation: undamped

¢ Resonance occurs when w = w,, and the magnitude x(t) becomes infinite
¢ At this condition, the solution

Vo . Fo Fo
x(t) = w—nsm( wnt) + (xo - ma)z) cos( wy,t) + p—— cos( wt)

Can be rewritten as

x(t) = %sin(wnt) + xo cos( wy,t) + (k — ma)z) {cos(wt) — cos(wyt)}
x(t) = :)—Osin(a)nt) + x cos( wyt) + (1 —(531/(?/1()> {cos(wt) — cos(w,t)}

Define static deflection §,; = (F,/k) and note: w2 = (k/m)

Vo . 6st
x(t) = w—nsm( wnt) + xo cos( wyt) + <1 — (a)z/a)z)) {cos( wt) — cos(wyt)}



Harmonic excitation: undamped

Vo
x(t) = —sm( wnt) + xg cos( w, t) +

Ost
Wy, < — (w?/wf)
_ cos( wt) — cos( w,t) _ %(Cos(wt) — cos( wyt))
wlgg { 1— (w?/w?) } - wlir}ul d
" n (11— @/wd)

I t sin wt Wyt .
= lim = ——sinw
 wown ((Qw/w?) 2 n

The response at resonance when w = w,, is

> {cos(wt) — cos( w,t)}

w, T
x(t) = —Sln( wynt) + xo cos( w,t) + 55t751n wnt
Tl
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Example 1

Given zero initial conditions a harmonic input of 10 Hz with 20 N
magnitude and k = 2000 N/m, and measured response amplitude of 0.1m,
compute the mass of the system.

Note: input frequency f = 10 Hz or w = 2nf = 20m rad/s; and Fy = 20 N;
For a spring-mass system subjected to a harmonic input, the total solution is:

Vo . Fo Fo
x(t) = w—nSIH( wnt) + (XO — m) cos( wyt) + mCOS((Dt)

Note that for initial conditions x, and v, equalled to zero;

F,
x(t) = (k_—sw)(cos(wt) — cos(wy,t))

— <1 — (szt/w%)> {cos(wt) — cos(w,t)}



Example 1

Ost
x(t) = <1 — (wz/w%)> {cos( wt) — cos( w,t)}

Static deflection §,; = (Fy/k) = (20/2000) = 0.01 m;
Given spring constant k = 2000 N/m

- - - Sst _
Measured response amplitude is defined as (1_(w2 /w%)) = 0.1

Solve for natural frequency w, = 66.23 rad/s

Using w,, = \/% the mass is found to be m = 0.45 kg
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Harmonic excitation: damped

Consider the usual spring-mass-damper system with applied force

F(t) = Fy cos(wt):

Damped system under harmonic excitation:
mX + cx + kx = F, cos(wt)

c k The equation can also be expressed as:

C k F,
” 5c'+—5c+—x=—0cos(a)t)

T m m m

* ¥+ 2{wpx + wix = fy cos(wt)
F, cos(wt)

’ < Natural frequency w, = v k/m

. . E
< Normalized force amplitude f, = EO

¢ Damping ratio { = —



Harmonic excitation: damped

The damped system subject to harmonic excitation:
X+ 2{wpx + wix = fy cos(wt)
¢+ The solution of the equation has two parts:
x(t) = (complementary solution) + {particular solution}

» A complementary solution for the homogenous equation for F(t) = 0
A particular solution irrespective of the free damped-vibration for
F(t) = F, cos(wt). This is also steady state response

L)

» ForF(t) =0 = % + 2{w,x + wix =0
= Complementary solution will depend on the damping. For the
underdamped case, it has the form

xc(t) = Ae $“nt{sin(wyt + ¢p)}
= A and ¢ will be determined from the initial conditions x, and v, later

L)



" J
Harmonic excitation: damped

< For F(t) = Fy cos(wt) = % + 2{w,x + wix = f, cos(wt)
= The particular solution is assumed to be related to the forcing function:
xp(t) = X cos(wt — 0)
— Frequency will be the same with forcing function frequency except there
could be a phase shift 8
— Magnitude of response may be different from the forcing function and X is
the amplitude of the steady state response
xp(t) = —wXsin(wt —0) and %p(t) = —w?X cos(wt — )
Substituting these into ¥ + 2{w,,x + wix = f, cos( wt):
—w?X cos(wt — 0) — 2{wwX sin(wt — ) + w2X cos(wt — 0) = f, cos( wt)
(w2—w?)X cos(wt — 0) — 2{w,wX sin(wt — ) = f, cos( wt)
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Harmonic excitation: damped

(w2—w?)X cos(wt — 0) — 2{w,wX sin(wt — ) = f, cos( wt)
= Note:
cos(wt — 0) = cos(wt) cos(B) + sin( wt) sin( )
sin(wt — 0) = sin( wt) cos(0) — cos(wt) sin( H)
= Substitute these into the above:
(w2—w?)X cos(wt) cos( ) + (w2—w?)X sin( wt) sin( H)
—2{w,wX sin(wt) cos(0) + 2w, wX cos( wt) sin( ) = f, cos( wt)

{(wi—w?)X cos(0) + 2{w,wX sin(8)} cos( wt)
+ {(w2—w?)X sin(0) — 2{w,,wX cos(8)}sin(wt) = f, cos( wt)
» This can be separated into 2 equations:
{(wi—w?)X cos(0) + 2{w,,wX sin( )} cos(wt) = f, cos( wt)
{(wi—w?)X sin(8) — 2{w,wX cos(0)}sin(wt) = 0



Harmonic excitation: damped

{(wi—w?)X cos(0) + 2{w,wX sin( )} = f,
{(wi—w?)X sin(8) — 2{w,wX cos(8)}sin(wt) =0
= Using the second equation:
{((w2—w?)X sin(0) — 2{w,wX cos(8)} =0 Jo? —0’F +(2Loo, )’
(w2—w?) sin(0) = 2{w,w cos(H)

Ploo

2(wnpw

tan @ =

(@2—0?) or 6 = tan —(w%_wz)

= Substitute cosine and sine from the triangle into the first equation:

2 2
[0, - 0°]

/

(wi—w?)X (wj—w?) N 2 wpwX (2{wpw)

W (@E—w?)? + {wy,w)? | (wi—w?)? + 2{w,w)?
2 _,.2\2 2

(((wr—w)*+(2{wnw) X = fO or X = fo

k\/(w%—wz)z+(2(wnw)2 J(w%—w2)2+(zzwnw)2

%+ The particular(or steady state) solution is xp(t) = X cos( wt — 0)

= fo

{




Harmonic excitation: damped

¢ The total solution for the harmonically excited underdamped system is
x(t) = xc(t) + x,(t) = Ae~$Ont{sin(wyt + ¢)} + X cos(wt — )
Note that A and ¢ need to be determined from the initial conditions x, and v,

¢ The total solution for the harmonically excited critically damped system is
x(t) = xc(t) + x,(t) = e"“nt(a; + ayt) + X cos(wt — 6)
Note that a; and a, need to be determined from the initial conditions x, and v,

¢ The total solution for the harmonically excited over damped system is
x(t) = alew"(_(_V -1t + aze(‘)"(_erV -1t + X cos(wt — 0)

Note that a; and a, need to be determined from the initial conditions x, and v,



Example 2

Given a spring-mass-damper system has spring constant k = 4000 N/m, mass
m = 10 kg, and damping coefficient ¢ = 40 Ns/m. Find the steady state and
total responses of the system under the harmonic force F(t) = 200 sin(10t)
given the initial conditions x, = 0 and v, = 10 m/s.

¢ Natural frequency w,, = \/7 /4000 = 20 rad/s;

¢ Damping ratio is { =

2w,m 2(20)(10) = (.1 (system is underdamped)

% Forceis F(t) = 200sin(10t), i.e. F; = 200, and f, = EO = % = 20, with

excitation frequency w = 10 rad/s;

% X = Jo = 0.066 m; and @ = tan~! ="%_ = 0.1326 rad.;
\/(a) w?2)2+(2{wnw)? G

% Hence steady state xp(t) = X sin(wt — 6) = 0.066 sin( 10t — 0.1326)



Example 2

¢ The total solution for the harmonically excited underdamped system is
x(t) = xc(t) + x,(t) = Ae~$@nt{sin(wyt + ¢)} + X sin(wt — )

« Damped natural frequency wy; = w,+y/1 — ¢? = 19.9 rad/s

x(t) = Ae ?*{sin(19.9t + ¢)} + 0.066 sin( 10t — 0.1326)
x(t) = —24e72{sin(19.9t + ¢)} + 19.94e 2 {c0s(19.9t + ¢)} + 0.66 cos( 10t — 0.1326)

» Fort=0,x=xy=0andx =vy, =10 m/s:
0 = A{sin(¢)} + 0.066 sin( — 0.1326)
10 = —2A{sin(¢)} + 19.94{cos(¢)} + 0.66 cos( — 0.1326)
Simplify:
0 = A{sin(¢)} — 0.008726 or A{sin(¢)} = 0.008726
10 = —2A{sin(¢p)} + 19.94{cos(¢)} + 0. 654
Substitute A{sin(¢p)} = 0.008726 into second equation:
10 = —2 x 0.008726 + 19.94{cos(¢)} + 0. 654

A{cos(¢p)} = 0.47

0008720 ¢ = 0.0185 rad

0.47

Therefore tan ¢ =



Example 2

% A{sin(¢)} = 0.008726 and A{cos(¢)} = 0.47
A =/(Asin(¢))? + (Acos($))? = 0.47

The total solution is:
x(t) = Ae ?*{sin(19.9t + ¢)} + 0.066 sin( 10t — 0.1326)
x(t) = 0.47e%*{sin(19.9t + 0.0185)} + 0.066 sin( 10t — 0.1326)




Steady state response

¢ For the underdamped, critically damped and over damped cases, the
transient response will diminish to zero. Hence, focus is on the steady state

response X cos( wt — 0)
¢ The damped system subject to harmonic excitation;
¥+ 2{wpx + wix = fy cos(wt)
In the steady state:
x(t) = X cos(wt — 0)

where
¥ — fo _ Fo
V(i—w?)? + (2{w,w)2 [k —mw?]? + (cw)?
; 2w 4 cw

6 = tan (w2—w?) [k — mw?]
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Steady state response

The amplitude and phase angle is also often written in non-dimensional form
to show that they are function of frequency ratior = (w/w,,):

Fo
X = k and § = tan~1 258ne
mow? 2 cw 2 (wn_wz)
1= ] +(7)
Define amplitude ratio as
X kX 1 1

M =

§se  Fo N T\ =R 20TP
- (2| = ()
a)n wn
1 2{wpw —1 24r
@i-w?) A 7

Phase shift: 6 = tan




Example 3

A simple spring—mass—damper system with mass m = 49.2 x 1073 kg,
damping coefficient ¢ = 0.11 kg/s, and spring constant k = 857.8 N/mis
subjected to a harmonic force of magnitude F, = 0.492 N at a forcing
frequency of w = 132 rad/s. Determine the amplitude ratio, phase shift, the
steady state response amplitude, and the static deflection

¢ Natural frequency w,, = \/7 \/ 5578 132 rad/s;

49.2x10"3

0.11
% Damping ratio Is { = Zorm — 2(132)(@9.2x10°5) — 0.0085
* fo=

Fo _ 0.492

m  49.2x10-3 10 N/m
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Example 3

< At excitation frequency w = 132 rad/s; frequency ratio = — = 1 rad/s;

Wn
fo

@302 +GConw)?

+» Steady state response amplitude X = = 0.034 m;

% Phase shift 6 = tan™* ZZTZ = 1.571 rad,;
[1-72]

o : S 1 _

% Amplitude ratio M = NrEirrreci 59

s Static deflection 6, = (Fy/k) = 0.000574

Note resonance w = w,, and the steady state amplitude is 59 times the static
deflection




