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Mechanical vibrations

Lecture 4 

Response to harmonic excitation (1DOF 

system)



Objectives

 Derive the 1DOF vibration system model 
subjected to harmonic excitation using 
Lagrange’s equation

 Analyze the response of 1DOF undamped 
vibration system to harmonic excitation

 Analyze the response of 1DOF damped 
vibration system to harmonic excitation

 Determine the steady state response of 
1DOF system in terms of amplitude ratio 
and phase shift



Introduction

❖ In free vibrations, initial conditions were used to excite the system

❖ In forced vibrations, external energy is applied to “excite” the system

❖ The external excitation can be supplied through an applied oscillating

force, which may be harmonic, non harmonic but periodic, non periodic,

or random in nature.

❖ The external excitation encountered in engineering systems is commonly 

produced by:

▪ Rotating machines, reciprocating machines, etc.

▪ Excitation by another vibrating system

▪ Excitation by natural forces (i.e. earthquake, vortex shedding)

❖ Harmonic response results when the system responses to a harmonic 

excitation



Introduction

Forcing 

Force

Forcing 

Displacement

Harmonic excitations can be:

❖ Harmonic force 

❖ Harmonic displacement



Harmonic force

Harmonic force excitation can be 

modeled with a sine or cosine 

function: 

𝐹 = 𝐹0 cos(𝜔𝑡)
where

❖ is the forcing function 

frequency in rad/s

❖ F0 is the forcing function 

amplitude in N



Lagrange’s equation
In terms of generalized coordinate q, the Lagrange’s equation for a single DOF 

system subject to a generalized force has the form

𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝑞
−
𝜕𝑇

𝜕𝑞
+
𝜕𝐷

𝜕 ሶ𝑞
+
𝜕𝑈

𝜕𝑞
= 𝑄

▪ T = Kinetic energy 

▪ U = Potential energy

▪ D = Rayleigh’s damping (or dissipation) function

▪ q = generalized coordinate that completely describe the dynamical system

▪ 𝑄 = σ𝑙 𝐹𝑙 ⋅
𝜕𝑟𝑙

𝜕𝑞
+ σ𝑙𝑀𝑙 ⋅

𝜕𝜔𝑙

𝜕 ሶ𝑞
(note dot product) generalized force for the l

bodies

▪ 𝐹𝑙 and 𝑀𝑙 are the vector representation of the external applied forces and 

moments on the lth body, respectively; 𝑟𝑙 and 𝜔𝑙 are the position and 

angular velocity vectors due to 𝐹𝑙 and 𝑀𝑙 respectively 



Lagrange’s equation

m

xk

c
F(t)

Generalized coordinate  𝑞 = 𝑥

Kinetic energy: 𝑇 =
1

2
𝑚 ሶ𝑥2

𝜕𝑇

𝜕 ሶ𝑞
=

𝜕𝑇

𝜕 ሶ𝑥
= 𝑚 ሶ𝑥 and    

𝜕𝑇

𝜕𝑞
=

𝜕𝑇

𝜕𝑥
= 0

❖ Dissipation function  𝐷 =
1

2
𝑐 ሶ𝑥2

𝜕𝐷

𝜕 ሶ𝑞
=
𝜕𝐷

𝜕 ሶ𝑥
= 𝑐 ሶ𝑥

❖ Potential energy   𝑈 =
1

2
𝑘𝑥2

𝜕𝑈

𝜕𝑞
=
𝜕𝑈

𝜕𝜃
= 𝑘𝑥



Lagrange’s equation

m

xk

c
F(t)

Generalized force

𝑄 = 𝐹
𝜕𝑟1
𝜕𝑞

= 𝐹(𝑡)
𝜕𝑥

𝜕𝑥
= 𝐹(𝑡)

❖ Apply Lagrange’s equation:

𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝑞
−
𝜕𝑇

𝜕𝑞
+
𝜕𝐷

𝜕 ሶ𝑞
+
𝜕𝑈

𝜕𝑞
= 𝑄

𝑑

𝑑𝑡
𝑚 ሶ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 𝐹(𝑡)

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 𝐹(𝑡)



Harmonic excitation: undamped

Consider the usual spring-mass system with applied force 𝐹(𝑡) = 𝐹0 cos 𝜔𝑡 :

Undamped system under harmonic excitation:

𝑚 ሷ𝑥 + 𝑘𝑥 = 𝐹0 cos 𝜔𝑡

The equation can also be expressed as:

ሷ𝑥 +
𝑘

𝑚
𝑥 =

𝐹0
𝑚
cos 𝜔𝑡

ሷ𝑥 + 𝜔𝑛
2𝑥 = 𝑓0 cos 𝜔𝑡

❖ Natural frequency 𝜔𝑛 = Τ𝑘 𝑚

❖ Normalized force amplitude 𝑓0 =
𝐹0

𝑚



Harmonic excitation: undamped

The undamped system subject to harmonic excitation:

ሷ𝑥 + 𝜔𝑛
2𝑥 = 𝑓0 cos 𝜔𝑡

❖ The solution of the equation has two parts:

𝑥 𝑡 = complementary solution + particular solution

• A complementary solution for the homogenous equation for 𝐹(𝑡) = 0
• A particular solution irrespective of the free damped-vibration for 

𝐹(𝑡) = 𝐹0 cos 𝜔𝑡

❖ For 𝐹 𝑡 = 0 ⟹ ሷ𝑥 + 𝜔𝑛
2𝑥 = 0

▪ Complementary solution has the form

𝑥𝐶(𝑡) = 𝐴 cos 𝜔𝑛𝑡 + 𝜙

▪ Which can be rewritten as 𝑥𝐶(𝑡) = 𝐴1 sin(𝜔𝑛𝑡) + 𝐴2 cos(𝜔𝑛𝑡)
▪ 𝐴1 and 𝐴2 will be determined from the initial conditions 𝑥0 and 𝑣0 later



Harmonic excitation: undamped

❖ For 𝐹(𝑡) = 𝐹0 cos 𝜔𝑡 ⟹ ሷ𝑥 + 𝜔𝑛
2𝑥 = 𝑓0 cos 𝜔𝑡

▪ The particular solution is assumed to be related to the forcing function:

𝑥𝑃(𝑡) = 𝑋 cos(𝜔𝑡)

– Frequency will be the same with forcing function frequency

– Magnitude of response may be different from the forcing function 

and X is the amplitude of the steady state response

ሶ𝑥𝑃(𝑡) = −𝜔𝑋 sin(𝜔𝑡) and     ሷ𝑥𝑃(𝑡) = −𝜔2𝑋 cos(𝜔𝑡)

Substituting these into the differential equation ሷ𝑥 + 𝜔𝑛
2𝑥 = 𝑓0 cos(𝜔𝑡):

−𝜔2𝑋 cos(𝜔𝑡) + 𝜔𝑛
2𝑋 cos(𝜔𝑡) = 𝑓0 cos(𝜔𝑡)

−𝜔2𝑋 + 𝜔𝑛
2𝑋 = 𝑓0

𝑋 =
𝑓0

𝜔𝑛
2 − 𝜔2

▪ Particular solution is 𝑥𝑃(𝑡) =
𝑓0

𝜔𝑛
2−𝜔2 cos(𝜔𝑡)



Harmonic excitation: undamped

𝑥 𝑡 = 𝑥𝐶 𝑡 + 𝑥𝑝 𝑡 = 𝐴1 sin(𝜔𝑛𝑡) + 𝐴2 cos(𝜔𝑛𝑡) +
𝑓0

𝜔𝑛
2 − 𝜔2

cos(𝜔𝑡)

ሶ𝑥 𝑡 = 𝜔𝑛𝐴1 cos(𝜔𝑛𝑡) − 𝜔𝑛𝐴2 sin(𝜔𝑛𝑡) −
𝜔𝑓0

𝜔𝑛
2 − 𝜔2

sin(𝜔𝑡)

▪ At time 𝑡 = 0, 𝑥 0 = 𝑥0

𝑥0 = 𝐴2 +
𝑓0

𝜔𝑛
2 − 𝜔2

𝐴2 = 𝑥0 −
𝑓0

𝜔𝑛
2 − 𝜔2

▪ At time 𝑡 = 0, ሶ𝑥 0 = 𝑣0
𝑣0 = 𝜔𝑛𝐴1 or      𝐴1 =

𝑣0

𝜔𝑛

❖ The total solution is 

𝑥 𝑡 =
𝑣0
𝜔𝑛

sin(𝜔𝑛𝑡) + 𝑥0 −
𝑓0

𝜔𝑛
2 − 𝜔2

cos(𝜔𝑛𝑡) +
𝑓0

𝜔𝑛
2 − 𝜔2

cos(𝜔𝑡)



Harmonic excitation: undamped

For an undamped 1DOF system subject to harmonic excitation:

𝑚 ሷ𝑥 + 𝑘𝑥 = 𝐹0 cos 𝜔𝑡

This can be written as

ሷ𝑥 + 𝜔𝑛
2𝑥 = 𝑓0 cos 𝜔𝑡

The total solution is:

𝑥 𝑡 =
𝑣0
𝜔𝑛

sin(𝜔𝑛𝑡) + 𝑥0 −
𝑓0

𝜔𝑛
2 − 𝜔2

cos(𝜔𝑛𝑡) +
𝑓0

𝜔𝑛
2 − 𝜔2

cos(𝜔𝑡)

or can also be written as

𝑥(𝑡) =
𝑣0
𝜔𝑛

sin(𝜔𝑛𝑡) + 𝑥0 −
𝐹0

𝑘 −𝑚𝜔2
cos(𝜔𝑛𝑡) +

𝐹0
𝑘 −𝑚𝜔2

cos(𝜔𝑡)

Note: harmonic terms with 2 different frequencies but not defined for 𝜔 = 𝜔𝑛



Response for 𝜔 < 𝜔𝑛

Response for 𝜔 approaches 𝜔𝑛

• If  close to n, then beating occurs 

• Beat frequency is 𝜔𝑏 = 𝜔𝑛 − 𝜔



Beats



Harmonic excitation: undamped

❖ Resonance occurs when 𝜔 = 𝜔𝑛 and the magnitude x(t) becomes infinite

❖ At this condition, the solution

𝑥(𝑡) =
𝑣0
𝜔𝑛

sin(𝜔𝑛𝑡) + 𝑥0 −
𝐹0

𝑘 −𝑚𝜔2
cos(𝜔𝑛𝑡) +

𝐹0
𝑘 −𝑚𝜔2

cos(𝜔𝑡)

Can be rewritten as

𝑥(𝑡) =
𝑣0
𝜔𝑛

sin(𝜔𝑛𝑡) + 𝑥0 cos(𝜔𝑛𝑡) +
𝐹0

𝑘 −𝑚𝜔2
cos(𝜔𝑡) − cos(𝜔𝑛𝑡)

𝑥(𝑡) =
𝑣0
𝜔𝑛

sin(𝜔𝑛𝑡) + 𝑥0 cos(𝜔𝑛𝑡) +
Τ𝐹0 𝑘

1 − Τ𝑚𝜔2 𝑘
cos(𝜔𝑡) − cos(𝜔𝑛𝑡)

Define static deflection 𝛿𝑠𝑡 = Τ𝐹0 𝑘 and note: 𝜔𝑛
2 = Τ𝑘 𝑚

𝑥(𝑡) =
𝑣0
𝜔𝑛

sin(𝜔𝑛𝑡) + 𝑥0 cos(𝜔𝑛𝑡) +
𝛿𝑠𝑡

1 − Τ𝜔2 𝜔𝑛
2 cos(𝜔𝑡) − cos(𝜔𝑛𝑡)



Harmonic excitation: undamped

𝑥(𝑡) =
𝑣0
𝜔𝑛

sin(𝜔𝑛𝑡) + 𝑥0 cos(𝜔𝑛𝑡) +
𝛿𝑠𝑡

1 − Τ𝜔2 𝜔𝑛
2 cos(𝜔𝑡) − cos(𝜔𝑛𝑡)

lim
𝜔→𝜔𝑛

cos(𝜔𝑡) − cos(𝜔𝑛𝑡)

1 − Τ𝜔2 𝜔𝑛
2 = lim

𝜔→𝜔𝑛

𝑑
𝑑𝜔 cos(𝜔𝑡) − cos(𝜔𝑛𝑡)

𝑑
𝑑𝜔

1 − Τ𝜔2 𝜔𝑛
2

= lim
𝜔→𝜔𝑛

𝑡 sin𝜔𝑡

Τ2𝜔 𝜔𝑛
2 =

𝜔𝑛𝑡

2
sin𝜔𝑛𝑡

The response at resonance when 𝜔 = 𝜔𝑛 is

𝑥(𝑡) =
𝑣0
𝜔𝑛

sin(𝜔𝑛𝑡) + 𝑥0 cos(𝜔𝑛𝑡) + 𝛿𝑠𝑡
𝜔𝑛𝑡

2
sin𝜔𝑛𝑡



When 𝜔 = 𝜔𝑛,

𝛿𝑠𝑡
𝜔𝑛𝑡

2
sin𝜔𝑛𝑡 will increases 

indefinitely

𝑘𝑒𝑞 =
3𝐸𝐼

2𝐿3

𝜔𝑛 =
3𝐸𝐼

2𝑚𝐿3



Example 1

Given zero initial conditions a harmonic input of 10 Hz with 20 N 

magnitude and k = 2000 N/m, and measured response amplitude of 0.1m, 

compute the mass of the system.

Note: input frequency 𝑓 = 10 Hz or 𝜔 = 2𝜋𝑓 = 20𝜋 rad/s; and 𝐹0 = 20 N;

For a spring-mass system subjected to a harmonic input, the total solution is:

𝑥(𝑡) =
𝑣0
𝜔𝑛

sin(𝜔𝑛𝑡) + 𝑥0 −
𝐹0

𝑘 − 𝑚𝜔2 cos(𝜔𝑛𝑡) +
𝐹0

𝑘 − 𝑚𝜔2 cos(𝜔𝑡)

Note that for initial conditions 𝑥0 and 𝑣0 equalled to zero; 

𝑥 𝑡 =
𝐹0

𝑘 − 𝑚𝜔2 cos(𝜔𝑡) − cos(𝜔𝑛𝑡)

=
𝛿𝑠𝑡

1 − Τ𝜔2 𝜔𝑛
2 cos(𝜔𝑡) − cos(𝜔𝑛𝑡)



Example 1

𝑥 𝑡 =
𝛿𝑠𝑡

1 − Τ𝜔2 𝜔𝑛
2 cos(𝜔𝑡) − cos(𝜔𝑛𝑡)

Static deflection 𝛿𝑠𝑡 = Τ𝐹0 𝑘 = Τ20 2000 = 0.01 m;

Given spring constant  𝑘 = 2000 N/m

Measured response amplitude is defined as  
𝛿𝑠𝑡

1− Τ𝜔2 𝜔𝑛
2 = 0.1

Solve for natural frequency ωn = 66.23 rad/s

Using  𝜔𝑛 =
𝑘

𝑚
the mass is found to be 𝑚 = 0.45 kg



Harmonic excitation: damped

Consider the usual spring-mass-damper system with applied force 

𝐹(𝑡) = 𝐹0 cos 𝜔𝑡 :

Damped system under harmonic excitation:

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 𝐹0 cos 𝜔𝑡

The equation can also be expressed as:

ሷ𝑥 +
𝑐

𝑚
ሶ𝑥 +

𝑘

𝑚
𝑥 =

𝐹0
𝑚
cos 𝜔𝑡

ሷ𝑥 + 2𝜁𝜔𝑛 ሶ𝑥 + 𝜔𝑛
2𝑥 = 𝑓0 cos 𝜔𝑡

❖ Natural frequency 𝜔𝑛 = Τ𝑘 𝑚

❖ Normalized force amplitude 𝑓0 =
𝐹0

𝑚

❖ Damping ratio 𝜁 =
𝑐

2𝜔𝑛𝑚



Harmonic excitation: damped

The damped system subject to harmonic excitation:

ሷ𝑥 + 2𝜁𝜔𝑛 ሶ𝑥 + 𝜔𝑛
2𝑥 = 𝑓0 cos 𝜔𝑡

❖ The solution of the equation has two parts:

𝑥 𝑡 = complementary solution + particular solution

• A complementary solution for the homogenous equation for 𝐹(𝑡) = 0
• A particular solution irrespective of the free damped-vibration for 

𝐹(𝑡) = 𝐹0 cos 𝜔𝑡 . This is also steady state response

❖ For 𝐹 𝑡 = 0 ⟹ ሷ𝑥 + 2𝜁𝜔𝑛 ሶ𝑥 + 𝜔𝑛
2𝑥 = 0

▪ Complementary solution will depend on the damping. For the 

underdamped case, it has the form

𝑥𝐶(𝑡) = 𝐴𝑒−𝜁𝜔𝑛𝑡 sin 𝜔𝑑𝑡 + 𝜙

▪ 𝐴 and 𝜙 will be determined from the initial conditions 𝑥0 and 𝑣0 later



Harmonic excitation: damped

❖ For 𝐹(𝑡) = 𝐹0 cos 𝜔𝑡 ⟹ ሷ𝑥 + 2𝜁𝜔𝑛 ሶ𝑥 + 𝜔𝑛
2𝑥 = 𝑓0 cos 𝜔𝑡

▪ The particular solution is assumed to be related to the forcing function:

𝑥𝑃 𝑡 = 𝑋 cos(𝜔𝑡 − 𝜃)

– Frequency will be the same with forcing function frequency except there 

could be a phase shift 𝜃

– Magnitude of response may be different from the forcing function and X is 

the amplitude of the steady state response

ሶ𝑥𝑃(𝑡) = −𝜔𝑋 sin(𝜔𝑡 − 𝜃) and     ሷ𝑥𝑃(𝑡) = −𝜔2𝑋 cos(𝜔𝑡 − 𝜃)

Substituting these into ሷ𝑥 + 2𝜁𝜔𝑛 ሶ𝑥 + 𝜔𝑛
2𝑥 = 𝑓0 cos(𝜔𝑡):

−𝜔2𝑋 cos(𝜔𝑡 − 𝜃) − 2𝜁𝜔𝑛𝜔𝑋 sin(𝜔𝑡 − 𝜃) + 𝜔𝑛
2𝑋 cos(𝜔𝑡 − 𝜃) = 𝑓0 cos(𝜔𝑡)

(𝜔𝑛
2−𝜔2)𝑋 cos(𝜔𝑡 − 𝜃) − 2𝜁𝜔𝑛𝜔𝑋 sin(𝜔𝑡 − 𝜃) = 𝑓0 cos(𝜔𝑡)



Harmonic excitation: damped

(𝜔𝑛
2−𝜔2)𝑋 cos(𝜔𝑡 − 𝜃) − 2𝜁𝜔𝑛𝜔𝑋 sin(𝜔𝑡 − 𝜃) = 𝑓0 cos(𝜔𝑡)

▪ Note:

cos(𝜔𝑡 − 𝜃) = cos(𝜔𝑡) cos( 𝜃) + sin(𝜔𝑡) sin( 𝜃)
sin(𝜔𝑡 − 𝜃) = sin(𝜔𝑡) cos( 𝜃) − cos(𝜔𝑡) sin( 𝜃)

▪ Substitute these into the above:

(𝜔𝑛
2−𝜔2)𝑋 cos(𝜔𝑡) cos( 𝜃) + (𝜔𝑛

2−𝜔2)𝑋 sin(𝜔𝑡) sin( 𝜃)
−2𝜁𝜔𝑛𝜔𝑋 sin(𝜔𝑡) cos( 𝜃) + 2𝜁𝜔𝑛𝜔𝑋 cos(𝜔𝑡) sin( 𝜃) = 𝑓0 cos(𝜔𝑡)

(𝜔𝑛
2−𝜔2)𝑋 cos( 𝜃) + 2𝜁𝜔𝑛𝜔𝑋 sin( 𝜃) cos(𝜔𝑡)

+ (𝜔𝑛
2−𝜔2)𝑋 sin( 𝜃) − 2𝜁𝜔𝑛𝜔𝑋 cos( 𝜃) sin(𝜔𝑡) = 𝑓0 cos(𝜔𝑡)

▪ This can be separated into 2 equations:

(𝜔𝑛
2−𝜔2)𝑋 cos( 𝜃) + 2𝜁𝜔𝑛𝜔𝑋 sin( 𝜃) cos(𝜔𝑡) = 𝑓0 cos(𝜔𝑡)
(𝜔𝑛

2−𝜔2)𝑋 sin( 𝜃) − 2𝜁𝜔𝑛𝜔𝑋 cos( 𝜃) sin(𝜔𝑡) = 0



Harmonic excitation: damped
(𝜔𝑛

2−𝜔2)𝑋 cos( 𝜃) + 2𝜁𝜔𝑛𝜔𝑋 sin( 𝜃) = 𝑓0
(𝜔𝑛

2−𝜔2)𝑋 sin( 𝜃) − 2𝜁𝜔𝑛𝜔𝑋 cos( 𝜃) sin(𝜔𝑡) = 0

▪ Using the second equation:

(𝜔𝑛
2−𝜔2)𝑋 sin( 𝜃) − 2𝜁𝜔𝑛𝜔𝑋 cos( 𝜃) = 0

(𝜔𝑛
2−𝜔2) sin( 𝜃) = 2𝜁𝜔𝑛𝜔 cos( 𝜃)

tan𝜃 =
2𝜁𝜔𝑛𝜔

(𝜔𝑛
2−𝜔2)

or         𝜃 = tan−1
2𝜁𝜔𝑛𝜔

(𝜔𝑛
2−𝜔2)

▪ Substitute cosine and sine from the triangle into the first equation:

(𝜔𝑛
2−𝜔2)𝑋(𝜔𝑛

2−𝜔2)

(𝜔𝑛
2−𝜔2)2 + 2𝜁𝜔𝑛𝜔

2
+

2𝜁𝜔𝑛𝜔𝑋(2𝜁𝜔𝑛𝜔)

(𝜔𝑛
2−𝜔2)2 + 2𝜁𝜔𝑛𝜔

2
= 𝑓0

(𝜔𝑛
2−𝜔2)2+(2𝜁𝜔𝑛𝜔)

2

(𝜔𝑛
2−𝜔2)2+ 2𝜁𝜔𝑛𝜔

2
𝑋 = 𝑓0 or   𝑋 =

𝑓0

(𝜔𝑛
2−𝜔2)2+ 2𝜁𝜔𝑛𝜔

2

❖ The particular(or steady state) solution is  𝑥𝑃 𝑡 = 𝑋 cos(𝜔𝑡 − 𝜃)



Harmonic excitation: damped

❖ The total solution for the harmonically excited underdamped system is  

𝑥 𝑡 = 𝑥𝐶 𝑡 + 𝑥𝑝 𝑡 = 𝐴𝑒−𝜁𝜔𝑛𝑡 sin 𝜔𝑑𝑡 + 𝜙 + 𝑋 cos(𝜔𝑡 − 𝜃)

Note that 𝐴 and 𝜙 need to be determined from the initial conditions 𝑥0 and 𝑣0

❖ The total solution for the harmonically excited critically damped system is

𝑥 𝑡 = 𝑥𝐶 𝑡 + 𝑥𝑝 𝑡 = 𝑒−𝜔𝑛𝑡 𝑎1 + 𝑎2𝑡 + 𝑋 cos(𝜔𝑡 − 𝜃)

Note that  𝑎1 and 𝑎2 need to be determined from the initial conditions 𝑥0 and 𝑣0

❖ The total solution for the harmonically excited over damped system is

𝑥 𝑡 = 𝑎1𝑒
𝜔𝑛 −𝜁− 𝜁2−1 𝑡

+ 𝑎2𝑒
𝜔𝑛 −𝜁+ 𝜁2−1 𝑡

+ 𝑋 cos(𝜔𝑡 − 𝜃)
Note that  𝑎1 and 𝑎2 need to be determined from the initial conditions 𝑥0 and 𝑣0



Example 2
Given a spring-mass-damper system has spring constant k = 4000 N/m, mass 

m = 10 kg, and damping coefficient c = 40 Ns/m. Find the steady state and 

total responses of the system under the harmonic force 𝐹 𝑡 = 200 sin(10𝑡)
given the initial conditions x0 = 0 and v0 = 10 m/s.

❖ Natural frequency 𝜔𝑛 =
𝑘

𝑚
=

4000

10
= 20 rad/s;

❖ Damping ratio is 𝜁 =
𝑐

2𝜔𝑛𝑚
=

40

2(20)(10)
= 0.1 (system is underdamped)

❖ Force is 𝐹 𝑡 = 200 sin(10𝑡), i.e. 𝐹0 = 200, and 𝑓0 =
𝐹0

𝑚
=

200

10
= 20, with 

excitation frequency 𝜔 = 10 rad/s; 

❖ 𝑋 =
𝑓0

(𝜔𝑛
2−𝜔2)2+ 2𝜁𝜔𝑛𝜔

2
= 0.066 m; and 𝜃 = tan−1

2𝜁𝜔𝑛𝜔

(𝜔𝑛
2−𝜔2)

= 0.1326 rad.;

❖ Hence steady state  𝑥𝑃 𝑡 = 𝑋 sin(𝜔𝑡 − 𝜃) = 0.066 sin( 10𝑡 − 0.1326)



Example 2

❖ The total solution for the harmonically excited underdamped system is  

𝑥 𝑡 = 𝑥𝐶 𝑡 + 𝑥𝑝 𝑡 = 𝐴𝑒−𝜁𝜔𝑛𝑡 sin 𝜔𝑑𝑡 + 𝜙 + 𝑋 sin(𝜔𝑡 − 𝜃)

• Damped natural frequency 𝜔𝑑 = 𝜔𝑛 1 − 𝜁2 = 19.9 rad/s

𝑥 𝑡 = 𝐴𝑒−2𝑡 sin 19.9𝑡 + 𝜙 + 0.066 sin( 10𝑡 − 0.1326)
ሶ𝑥 𝑡 = −2𝐴𝑒−2𝑡 sin 19.9𝑡 + 𝜙 + 19.9𝐴𝑒−2𝑡 cos 19.9𝑡 + 𝜙 + 0. 66 cos( 10𝑡 − 0.1326)

▪ For 𝑡 = 0, 𝑥 = 𝑥0 = 0 and ሶ𝑥 = 𝑣0 = 10 m/s:

0 = 𝐴 sin 𝜙 + 0.066 sin( − 0.1326)
10 = −2𝐴 sin 𝜙 + 19.9𝐴 cos 𝜙 + 0. 66 cos( − 0.1326)

Simplify:

0 = 𝐴 sin 𝜙 − 0.008726 or     𝐴 sin 𝜙 = 0.008726
10 = −2𝐴 sin 𝜙 + 19.9𝐴 cos 𝜙 + 0. 654

Substitute 𝐴 sin 𝜙 = 0.008726 into second equation:

10 = −2 × 0.008726 + 19.9𝐴 cos 𝜙 + 0. 654
𝐴 cos 𝜙 = 0.47

Therefore tan𝜙 =
0.008726

0.47
or    𝜙 = 0.0185 rad



Example 2

❖ 𝐴 sin 𝜙 = 0.008726 and   𝐴 cos 𝜙 = 0.47

𝐴 = 𝐴 sin(𝜙) 2 + 𝐴 cos(𝜙) 2 = 0.47
The total solution is:

𝑥 𝑡 = 𝐴𝑒−2𝑡 sin 19.9𝑡 + 𝜙 + 0.066 sin( 10𝑡 − 0.1326)
𝑥 𝑡 = 0.47𝑒−2𝑡 sin 19.9𝑡 + 0.0185 + 0.066 sin( 10𝑡 − 0.1326)



Steady state response

❖ For the underdamped, critically damped and over damped cases, the 

transient response will diminish to zero. Hence, focus is on the steady state 

response 𝑋 cos(𝜔𝑡 − 𝜃)

❖ The damped system subject to harmonic excitation:

ሷ𝑥 + 2𝜁𝜔𝑛 ሶ𝑥 + 𝜔𝑛
2𝑥 = 𝑓0 cos 𝜔𝑡

In the steady state:

𝑥(𝑡) = 𝑋 cos(𝜔𝑡 − 𝜃)

where

𝑋 =
𝑓0

(𝜔𝑛
2−𝜔2)2 + 2𝜁𝜔𝑛𝜔

2
=

𝐹0

[𝑘 − 𝑚𝜔2]2 + (𝑐𝜔)2

𝜃 = tan−1
2𝜁𝜔𝑛𝜔

(𝜔𝑛
2−𝜔2)

= tan−1
𝑐𝜔

𝑘 −𝑚𝜔2



Steady state response

The amplitude and phase angle is also often written in non-dimensional form 

to show that they are function of frequency ratio r = Τ𝜔 𝜔𝑛 :

𝑋 =
𝐹0
𝑘

1−
𝑚𝜔2

𝑘

2

+
𝑐𝜔

𝑘

2

and 𝜃 = tan−1
2𝜁𝜔𝑛𝜔

(𝜔𝑛
2−𝜔2)

Define amplitude ratio as 

𝑀 =
𝑋

𝛿𝑠𝑡
=
𝑘𝑋

𝐹0
=

1

1 −
𝜔
𝜔𝑛

2 2

+ 2𝜁
𝜔
𝜔𝑛

2

=
1

1 − 𝑟2 2 + 2𝜁𝑟 2

Phase shift:    𝜃 = tan−1
2𝜁𝜔𝑛𝜔

(𝜔𝑛
2−𝜔2)

= tan−1
2𝜁𝑟

1−𝑟2



Example 3

A simple spring–mass–damper system with mass 𝑚 = 49.2 × 10−3 kg, 

damping coefficient 𝑐 = 0.11 kg/s, and spring constant 𝑘 = 857.8 N/m is 

subjected to a harmonic force of magnitude 𝐹0 = 0.492 N at a forcing 

frequency of 𝜔 = 132 rad/s. Determine the amplitude ratio, phase shift, the 

steady state response amplitude, and the static deflection 

❖ Natural frequency 𝜔𝑛 =
𝑘

𝑚
=

857.8

49.2×10−3
= 132 rad/s;

❖ Damping ratio is 𝜁 =
𝑐

2𝜔𝑛𝑚
=

0.11

2(132)(49.2×10−3)
= 0.0085

❖ 𝑓0 =
𝐹0

𝑚
=

0.492

49.2×10−3
= 10 N/m



Example 3

❖ At excitation frequency 𝜔 = 132 rad/s; frequency ratio =
𝜔

𝜔𝑛
= 1 rad/s;

❖ Steady state response amplitude 𝑋 =
𝑓0

(𝜔𝑛
2−𝜔2)2+ 2𝜁𝜔𝑛𝜔

2
= 0.034 m; 

❖ Phase shift 𝜃 = tan−1
2𝜁𝑟

1−𝑟2
= 1.571 rad.;

❖ Amplitude ratio 𝑀 =
1

1−𝑟2 2+ 2𝜁𝑟 2
= 59

❖ Static deflection 𝛿𝑠𝑡 = Τ𝐹0 𝑘 = 0.000574

Note resonance 𝜔 = 𝜔𝑛 and the steady state amplitude is 59 times the static 

deflection


