ME1020

Mechanical vibrations

Lecture 3
Free vibration (damped 1DOF system)
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Objectives

Describe the characteristics of viscous
dampers

Derive the 1DOF free damped vibration
system model based on Newton’s laws
and Lagrange’s equation

Determine the damping ratio, and
response of 1DOF free damped vibration
system responses



Friction and damping

All vibrations have damping to some degree due to dry friction
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Friction and damping

Viscous damping
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Viscous damper

4 Force (or Torque)

Translational damper F =cx
. C
Rotational spring T = c6 — >
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Viscous damper

Relative motion between parallel nA
surfaces ¢ =}
(A4 = area of smaller plate)

Dashpot (axial motion of a c:m s 3nD’l ( 1424 )
piston in a cylinder) ' 4d°
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n = fluid viscosity
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Viscous damper

For n dampers (with coefficients ¢4, c,, -*+, ¢c;;) connected in series, the
equivalent damper coefficient is:
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For n dampers (with coefficients ¢4, c,, -++, ¢;;) connected in parallel, the

equivalent damper coefficient is:
Ceq =C1+Cp+ -+ Cpy
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Example 1

Represent the given system as an equivalent vibratory system with mass m,

equivalent stiffness k,,, and equivalent damping c,,.
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Example 1
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Equivalent spring constant: k., = k; + k;
Equivalent damper coefficient: c,, = ¢; + ¢
The system equation is

MX + CegX + kegx =0
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Spring-mass-damper system

An example of a structure that can be idealized as simple spring-mass-
damper system (if friction is not negligible):
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Equivalent spring-
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Spring-mass-damper system
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< At the equilibrium position, all the forces are N

balanced and the system is stationary £y £
¢ Draw the free-body diagram about the equilibrium m T
X

position
% The spring force is F; = kx
% The damper forceis F, = cx
» Applying Newton’s law on the mass
mx =—F, — F, = —kx —cx
¢ The spring-mass equation is
mx+cx=kx=0



Spring-mass-damper system
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A mass-spring-damper system subjected to initial conditions x, and v is
an example of a single-degree of freedom “free vibration” damped

system
¢ The system equation has the form:
mx + cx + kx =0 or ¥+ 2{wpx + wix =0

= Natural frequency w,, = \/%

. . cw
= Damping ratio { = chwn = Zx/j(_m =k




Lagrange’s equation

In terms of generalized coordinate g, the Lagrange’s equation for a single DOF
free damped system has the form

d (0T aT ab U
at (aq) ag " aq Taq

= T =Kinetic energy

= U = Potential energy

= D = Rayleigh’s damping (or dissipation) function

= (= generalized coordinate that completely describe the dynamical system
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Example 2

Use Lagrange’s equation to derive the equation of motion for the system
using generalized coordinate 6. The mass moment of inertia of the disk
about “O” 1s I.

% Note that x = RO
% Generalized coordinate g = 6

< Kineticenergy T = %Iéz + %ma‘cz

1 . 1 .
T =—=10% + —mR?%6?
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< Dissipation function D = %cx —cR292
dD 0dD :
— = — = cR?%60
dq 00
< Potential energy U = %kx2 = %kRZHZ
U _U_ .
dg 00
¢ Apply Lagrange’s equation:
d (0T 6T dD OU
dt \dq 6q aq aq

16 + mR20 + cR%0 + kR?0 =0
(I + mR?)8 + cR?6 + kR?%6 =0



1DOF free damped

A 1DOF free damped system equation has the form:
mx+cx+kx =20
¢ System equation can be written in the form:
¥+ 2{wpx twix =0

= Natural frequency w,, = /(k/m)
Cc

- - . c __ Cwn
= Dampingratio { = e — Vim 2k

“* When ¢ = 0, system is undamped and the response is harmonic motion

< When ¢ = 1, system is critically damped with ¢ = c,, = 2Vkm = 2mo,,
and c.,- Is called the critical damping coefficient

Note: the damping ration can be definedas { = c¢/c,

* When 0 < ¢ < 1, the system is underdamped

* When ¢ > 1, the system is over-damped

The responses for under, over and critically damped cases are different
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1DOF free damped

If the DOF free damped system is vibrating then something must have (in
the past) transferred energy into to the system and caused it to move
For example the mass could have been moved a distance x, and then
released at t = O (i.e. given Potential energy) or given an initial velocity v,
(i.e. given Kinetic energy) or some combination of the two cases. These
are called initial conditions
The solution to m¥ + cx + kx = 0 is assumed to have the form x = Ae#t
Substitute this back into the governing equation:

(mA? + cA + k)Ae*t =0
This is only satisfied forr mA? + cA + k=0
The solution for A (or the root of the characteristics equation) is:

A1z = —L‘F\/(L)Z L —{wy + w72 — 1

2m 2m m
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Underdamped case

System equation can be written in the form: ¥ + 2{w,,x +w2 x = 0
¢ Underdamped case 0 < { < 1,

Ao =—(w, * wp/(?—1=—{w, + wg will resultin 2 complex roots
% wy = wyy/1 — % =damped natural frequency

\/

¢ Solution is of the form:
x(t) = Aett = e=¢@nt(a,e/(@aD) 4 g,e~/(@aD))
x(t) = e $®nt{Bsin(wyt + ¢)}
x(t) = —((wy)e B sin(wyt + ¢)} + e St {Bw cos(wyt + @)}
s Attimet =0, x(0) = xy and x(0) = vy,:
x(0) = xo = Bsin(¢)
x(0) = vy = —((wy) {B sin(¢)} + {Bwgcos(¢)}

Vo _ (waq) __ XoWd
Xo Cwn + tan(¢) ortan(¢) = %o+ wnXo




Underdamped case

Triangle for tan(¢) = - fg‘:)dx = V(o + G, %, F + (%0, )
0 n+o

¢ From the right-angle triangle:

XoWgqg

sing =

X, + C, X
\/(560 + {wnpxg)? + (xgwg)? o F L

% Since xy = Bsin(¢)

B — VG + wnxp)? + (xowg)?
Wq
s With B and ¢ the complete
equation is obtained:

x(t) = e $@nt{Bsin(wyt + ¢)}

Xo®y



Underdamped case

x(t) = e $@nt{Bsin(wyt + @)} +

f

Displacement
I A xebun!
X 5 Y 4
Xsing [\" ~———
1 S e

¢ =tan! *o%d
Xo + {wnpXo

B = VG + {wnxo)? + (xowg)?

W

t 10 it 20
time
I 1ahE = W Spanew
rodificd by DR ussdl, 1437

¢ Black = (undamped) exhibits SHM

¢ Blue = (underdamped) exhibits decaying oscillatory motion
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Phase plane comparison:
=  Plot of x with y for same system
with same initial conditions x,
and v, where
x(t)
Yy = o,
+» Undamped case
x(t) = Asin(w,t + ¢)

¢ Underdamped case
x(t) = Ae St sin(wyt + @)



Underdamped case

+» Rate of natural logarithm decay depends

on damping
+» Damped natural period 4 is time Displacement
between successive peaks and is related )
to damped natural frequency »\\\
AN
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% For peaks n cycles apart, logarithmic .
decrement o'is #
Xl 277:( /
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% Damping ratio can be found from 6 by

5
¢ = J@m)Z + 82




Example 3

The following free response data were obtained from a vibrating system Find
the natural frequency, damped natural frequency and the damping ratio.

1 -

0.8 7 (=245
g 0.6 - 1,=0.57 cm
g 0.4 1 t=8.7s
g021 =013 cm
SE | | | | | |time, s
202 0 2 4 6 8 10
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Critically damped case

System equation can be written in the form: ¥ + 2{w,x +w2 x = 0
¢ Critically damped case { = 1,

Ao =—{w, * wp/(? =1 =—w, will resultin 2 repeated real roots
¢ Solution is of the form (with 2 independent solutions):
x(t) = Ade?t = e~ “nt(q; + a,t)
x(t) = —a w,e”“nt — a,w,te” 9t + g,e " @nt

% Attimet =0, x(0) = x, and x(0) = v,:

x(0) =xo =ay

x(0) =vy = —aqw, + a, = —xqw, + a,

A, = Vg + XgWwy

¢ The response is

x(t) = (xg + xgwut + vot)e @nt



Critically damped case

x(t) = (xg + xqwpt + vot)e @nt
« Exponential decay: fastest approach to steady state without oscillation

x(t) _-x(0})>0
x(0)=0
x(0}<O

-

x{O)




Overdamped case

System equation can be written in the form: ¥ + 2{w,x +w2 x = 0
¢ Over damped case ¢ > 1, there are 2 distinct real roots

Mg =~y + w02 — 1= wy (-7 +/77— 1)

Solution is of the form:

x(t) = Ae?t = aq ewn( {—V¢3- ) + azewn(_ﬁ'\/(z—l)t
x(t) — 4 (_C R (2 N 1) (Une(_(_ ZZ_l)wnt + az (_6 + \/ﬁ) wne(_z-l_ v ZZ_I)wnt

% Attimet =0,x(0) =xpand x(0) = vy: x(0) =x9 =aq + a,
#(0) =vo = a, (¢ =V = 1) wy + ay (—¢ +/02 = 1) wy
vy = —(wn(ay + a3) + (@, /Z = 1) (—ay + ay)
Vo + (o = (wn/T2 = 1) (—ay + a5)



Overdamped case

Vo + {wnXg

WnA/ (2 -1

a1+a2=x0

(—a; +ay) =

< Solve for a; and a,:

—Vp — (C — /(% = 1)a)nx0

oo an\/ {2 —1
Vo + (( ++/¢% — 1)a)nx0
a, =

an\/ (2 —1
¢ The response Is:

2 (0) = aye( VT D)ont 4o (6P T)ont
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Overdamped case
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Owerdamped (£ = 1)
Crtically
=, damped ({ =1}
S

Comparison

Undamped ({ = 0)

Underdamped (£ =< 1)
{arg i8 smaller
than )

Time response characteristics

= X}

~ Underdamped

Phase plane representations



