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Mechanical vibrations

Lecture 3 

Free vibration (damped 1DOF system)



Objectives

 Describe the characteristics of viscous 
dampers

 Derive the 1DOF free damped vibration 
system model based on Newton’s laws 
and Lagrange’s equation

 Determine the damping ratio, and 
response of 1DOF free damped vibration 
system responses



Friction and damping

All vibrations have damping to some degree due to dry friction
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Friction and damping
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Viscous damper

❖ Force F 

❖ Torque T

❖ Damping coefficient c

❖ Rate of linear deformation ሶ𝑥

❖ Rate of angular deformation ሶ𝜃

TYPE LOAD

Translational damper 𝐹 = 𝑐 ሶ𝑥

Rotational spring 𝑇 = 𝑐 ሶ𝜃



Viscous damper

 = fluid viscosity 



Viscous damper

For  n dampers (with coefficients 𝑐1, 𝑐2, ⋯ , 𝑐𝑛) connected in series, the 

equivalent damper coefficient is:
1

𝑐𝑒𝑞
=

1

𝑐1
+
1

𝑐2
+. . . +

1

𝑐𝑛

For  n dampers (with coefficients 𝑐1, 𝑐2, ⋯ , 𝑐𝑛) connected in parallel, the 

equivalent damper coefficient is:

𝑐𝑒𝑞 = 𝑐1 + 𝑐2 +⋯+ 𝑐𝑛



Example 1

c1 c2

k1 k2

m

x

Represent the given system as an equivalent vibratory system with mass m, 

equivalent stiffness keq, and equivalent damping ceq.



Example 1

Equivalent spring constant: 𝑘𝑒𝑞 = 𝑘1 + 𝑘2
Equivalent damper coefficient:  𝑐𝑒𝑞 = 𝑐1 + 𝑐2
The system equation is 

𝑚 ሷ𝑥 + 𝑐𝑒𝑞 ሶ𝑥 + 𝑘𝑒𝑞𝑥 = 0



Spring-mass-damper system

An example of a structure that can be idealized as simple spring-mass-

damper system (if friction is not negligible):

x

kc

m

Equivalent spring-

mass-damper system



Spring-mass-damper system

❖ At the equilibrium position, all the forces are 

balanced and the system is stationary 

❖ Draw the free-body diagram about the equilibrium 

position 

❖ The spring force is 𝐹1 = 𝑘𝑥
❖ The damper force is 𝐹2 = 𝑐 ሶ𝑥
❖ Applying Newton’s law on the mass

𝑚 ሷ𝑥 = −𝐹1 − 𝐹2 = −𝑘𝑥 − 𝑐 ሶ𝑥
❖ The spring-mass equation is

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 = 𝑘𝑥 = 0



Spring-mass-damper system

❖ A mass-spring-damper system subjected to initial conditions 𝑥0 and 𝑣0 is 

an example of a single-degree of freedom “free vibration” damped 

system 

❖ The system equation has the form: 

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 0 or ሷ𝑥 + 2𝜁𝜔𝑛 ሶ𝑥 + 𝜔𝑛
2𝑥 = 0

▪ Natural frequency 𝜔𝑛 =
𝑘

𝑚

▪ Damping ratio 𝜁 =
𝑐

2𝑚𝜔𝑛
=

𝑐

2 𝑘𝑚
=

𝑐𝜔𝑛

2𝑘
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Lagrange’s equation

In terms of generalized coordinate q, the Lagrange’s equation for a single DOF 

free damped system has the form

𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝑞
−
𝜕𝑇

𝜕𝑞
+
𝜕𝐷

𝜕 ሶ𝑞
+
𝜕𝑈

𝜕𝑞
= 0

▪ T = Kinetic energy 

▪ U = Potential energy

▪ D = Rayleigh’s damping (or dissipation) function

▪ q = generalized coordinate that completely describe the dynamical system

𝐷 =
1

2
𝑐( ሶ𝑞2 − ሶ𝑞1)

2



Example 2

Use Lagrange’s equation to derive the equation of motion for the system 

using generalized coordinate 𝜃. The mass moment of inertia of the disk 

about “O” is I. 

❖ Note that 𝑥 = 𝑅𝜃
❖ Generalized coordinate  𝑞 = 𝜃

❖ Kinetic energy 𝑇 =
1

2
𝐼 ሶ𝜃2 +

1

2
𝑚 ሶ𝑥2

𝑇 =
1

2
𝐼 ሶ𝜃2 +

1

2
𝑚𝑅2 ሶ𝜃2

𝜕𝑇

𝜕 ሶ𝑞
=
𝜕𝑇

𝜕 ሶ𝜃
= 𝐼 ሶ𝜃 + 𝑚𝑅2 ሶ𝜃

𝜕𝑇

𝜕𝑞
=
𝜕𝑇

𝜕𝜃
= 0



Example 2

❖ Dissipation function  𝐷 =
1

2
𝑐 ሶ𝑥2 =

1

2
𝑐𝑅2 ሶ𝜃2

𝜕𝐷

𝜕 ሶ𝑞
=
𝜕𝐷

𝜕 ሶ𝜃
= 𝑐𝑅2 ሶ𝜃

❖ Potential energy   𝑈 =
1

2
𝑘𝑥2 =

1

2
𝑘𝑅2𝜃2

𝜕𝑈

𝜕𝑞
=
𝜕𝑈

𝜕𝜃
= 𝑘𝑅2𝜃

❖ Apply Lagrange’s equation:

𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝑞
−
𝜕𝑇

𝜕𝑞
+
𝜕𝐷

𝜕 ሶ𝑞
+
𝜕𝑈

𝜕𝑞
= 0

𝐼 ሷ𝜃 + 𝑚𝑅2 ሷ𝜃 + 𝑐𝑅2 ሶ𝜃 + 𝑘𝑅2𝜃 = 0

𝐼 + 𝑚𝑅2 ሷ𝜃 + 𝑐𝑅2 ሶ𝜃 + 𝑘𝑅2𝜃 = 0



1DOF free damped

A 1DOF free damped system equation has the form:  

𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 0
❖ System equation can be written in the form:

ሷ𝑥 + 2𝜁𝜔𝑛 ሶ𝑥 +𝜔𝑛
2 𝑥 = 0

▪ Natural frequency 𝜔𝑛 = Τ𝑘 𝑚

▪ Damping ratio 𝜁 =
𝑐

2𝑚𝜔𝑛
=

𝑐

2 𝑘𝑚
=

𝑐𝜔𝑛

2𝑘

❖ When 𝜁 = 0, system is undamped and the response is harmonic motion

❖ When 𝜁 = 1, system is critically damped with 𝑐 = 𝑐𝑐𝑟 = 2 𝑘𝑚 = 2𝑚𝜔𝑛

and 𝑐𝑐𝑟 is called the critical damping coefficient 

Note: the damping ration can be defined as 𝜁 = Τ𝑐 𝑐𝑐𝑟
❖ When 0 < 𝜁 < 1, the system is underdamped

❖ When 𝜁 > 1, the system is over-damped

The responses for under, over and critically damped cases are different



1DOF free damped

❖ If  the DOF free damped system is vibrating then something must have (in 

the past) transferred energy into to the system and caused it to move

❖ For example the mass could have been moved a distance 𝑥0 and then 

released at t = 0 (i.e. given Potential energy) or given an initial velocity v0

(i.e. given Kinetic energy) or  some combination of the two cases. These 

are called initial conditions

❖ The solution to 𝑚 ሷ𝑥 + 𝑐 ሶ𝑥 + 𝑘𝑥 = 0 is assumed to have the form 𝑥 = 𝐴𝑒𝜆𝑡

❖ Substitute this back into the governing equation:

(𝑚𝜆2 + 𝑐𝜆 + 𝑘)𝐴𝑒𝜆𝑡 = 0
❖ This is only satisfied for: 𝑚𝜆2 + 𝑐𝜆 + 𝑘 = 0
❖ The solution for  (or the root of the characteristics equation) is:

𝜆1,2 = −
𝑐

2𝑚
±

𝑐

2𝑚

2

−
𝑘

𝑚
= −𝜁𝜔𝑛 ± 𝜔𝑛 𝜁2 − 1



Underdamped case

System equation can be written in the form: ሷ𝑥 + 2𝜁𝜔𝑛 ሶ𝑥 +𝜔𝑛
2 𝑥 = 0

❖ Underdamped case 0 < 𝜁 < 1,

𝜆1,2 = −𝜁𝜔𝑛 ± 𝜔𝑛 𝜁2 − 1 = −𝜁𝜔𝑛 ± 𝜔𝑑 will result in 2 complex roots

❖ 𝜔𝑑 = 𝜔𝑛 1 − 𝜁2 = damped natural frequency 

❖ Solution is of the form:

𝑥(𝑡) = 𝐴𝑒𝜆𝑡 = 𝑒−𝜁𝜔𝑛𝑡 𝑎1𝑒
𝑗(𝜔𝑑𝑡) + 𝑎2𝑒

−𝑗(𝜔𝑑𝑡)

𝑥(𝑡) = 𝑒−𝜁𝜔𝑛𝑡 𝐵sin 𝜔𝑑𝑡 + 𝜙
ሶ𝑥(𝑡) = −(𝜁𝜔𝑛)𝑒

−𝜁𝜔𝑛𝑡 𝐵 sin 𝜔𝑑𝑡 + 𝜙 + 𝑒−𝜁𝜔𝑛𝑡 𝐵𝜔𝑑cos 𝜔𝑑𝑡 + 𝜙
❖ At time 𝑡 = 0, 𝑥 0 = 𝑥0 and ሶ𝑥 0 = 𝑣0:

𝑥 0 = 𝑥0 = 𝐵sin 𝜙
ሶ𝑥 0 = 𝑣0 = −(𝜁𝜔𝑛) 𝐵 sin 𝜙 + 𝐵𝜔𝑑cos 𝜙
𝑣0

𝑥0
= −𝜁𝜔𝑛 +

(𝜔𝑑)

tan(𝜙)
or tan(𝜙) =

𝑥0𝜔𝑑

ሶ𝑥0+𝜁𝜔𝑛𝑥0



Underdamped case

Triangle for  tan(𝜙) =
𝑥0𝜔𝑑

ሶ𝑥0+𝜁𝜔𝑛𝑥0
⟹

❖ From the right-angle triangle:

sin𝜙 =
𝑥0𝜔𝑑

ሶ𝑥0 + 𝜁𝜔𝑛𝑥0
2 + 𝑥0𝜔𝑑

2

❖ Since 𝑥0 = 𝐵sin 𝜙

𝐵 =
ሶ𝑥0 + 𝜁𝜔𝑛𝑥0

2 + 𝑥0𝜔𝑑
2

𝜔𝑑

❖ With B and  the complete 

equation is obtained:

𝑥(𝑡) = 𝑒−𝜁𝜔𝑛𝑡 𝐵sin 𝜔𝑑𝑡 + 𝜙

dx 0



( ) ( )20

2

00 dn xxx  ++

00 xx n+



Underdamped case

𝑥 𝑡 = 𝑒−𝜁𝜔𝑛𝑡 𝐵sin 𝜔𝑑𝑡 + 𝜙

𝜙 = tan−1
𝑥0𝜔𝑑

ሶ𝑥0 + 𝜁𝜔𝑛𝑥0

𝐵 =
ሶ𝑥0 + 𝜁𝜔𝑛𝑥0

2 + 𝑥0𝜔𝑑
2

𝜔𝑑

❖ Black = (undamped) exhibits SHM

❖ Blue = (underdamped) exhibits decaying oscillatory motion



Phase plane comparison:

▪ Plot of x with y for same system 

with same initial conditions 𝑥0
and 𝑣0 where

𝑦 =
ሶ𝑥(𝑡)

𝜔𝑛

❖ Undamped case

𝑥 𝑡 = 𝐴 sin 𝜔𝑛𝑡 + 𝜙

❖ Underdamped case

𝑥(𝑡) = 𝐴𝑒−𝜁𝜔𝑛𝑡 sin 𝜔𝑑𝑡 + 𝜙

𝑥2(𝑡)

𝐴2
+
𝑦2(𝑡)

𝐴2
= 1



Underdamped case
❖ Rate of natural logarithm decay depends 

on damping

❖ Damped natural period 𝜏𝑑 is time 

between successive peaks and is related 

to damped natural frequency 

𝜔𝑑 = 𝜔𝑛 1 − 𝜁2 by

𝜏𝑑 =
2𝜋

𝜔𝑑

❖ For peaks n cycles apart, logarithmic 

decrement  is

𝛿 =
1

𝑛
ln

𝑋1
𝑋𝑛+1

=
2𝜋𝜁

1 − 𝜁2

❖ Damping ratio can be found from  by

𝜁 =
𝛿

(2𝜋)2 + 𝛿2



Example 3

The following free response data were obtained from a vibrating system Find 

the natural frequency, damped natural frequency and the damping ratio.

Note: y1=.57 cm @ 2.4 sec; y4=.13 cm @ 8.7 sec;

# of intervals between points = 3

3𝜏𝑑 = 8.7 − 2.4 = 6.3s ⟹ 𝜏𝑑 = 2.1s;

Damped natural frequency is 𝜔𝑑 =
2𝜋

𝜏𝑑
= 3rad/s

Logarithmic decrement is 𝛿 =
1

𝑛
ln

𝑦1

𝑦4
=

1

3
ln

0.57

0.13
= 0.49

Damping ratio is ζ =
𝛿

(2𝜋)2+𝛿2
==

0.49

(2𝜋)2+0.492
= 0.078

Natural frequency is 𝜔𝑛 =
𝜔𝑑

1−𝜁2
=

3

1−0.0782
= 3.009rad/s



Critically damped case

System equation can be written in the form: ሷ𝑥 + 2𝜁𝜔𝑛 ሶ𝑥 +𝜔𝑛
2 𝑥 = 0

❖ Critically damped case 𝜁 = 1,

𝜆1,2 = −𝜁𝜔𝑛 ± 𝜔𝑛 𝜁2 − 1 = −𝜔𝑛 will result in 2 repeated real roots

❖ Solution is of the form (with 2 independent solutions):

𝑥(𝑡) = 𝐴𝑒𝜆𝑡 = 𝑒−𝜔𝑛𝑡 𝑎1 + 𝑎2𝑡

ሶ𝑥(𝑡) = −𝑎1𝜔𝑛𝑒
−𝜔𝑛𝑡 − 𝑎2𝜔𝑛𝑡𝑒

−𝜔𝑛𝑡 + 𝑎2𝑒
−𝜔𝑛𝑡

❖ At time 𝑡 = 0, 𝑥 0 = 𝑥0 and ሶ𝑥 0 = 𝑣0:

𝑥 0 = 𝑥0 = 𝑎1
ሶ𝑥 0 = 𝑣0 = −𝑎1𝜔𝑛 + 𝑎2 = −𝑥0𝜔𝑛 + 𝑎2

𝑎2 = 𝑣0 + 𝑥0𝜔𝑛

❖ The response is

𝑥(𝑡) = 𝑥0 + 𝑥0𝜔𝑛𝑡 + 𝑣0𝑡 𝑒
−𝜔𝑛𝑡



Critically damped case

𝑥(𝑡) = 𝑥0 + 𝑥0𝜔𝑛𝑡 + 𝑣0𝑡 𝑒
−𝜔𝑛𝑡

• Exponential decay: fastest approach to steady state without oscillation



Overdamped case
System equation can be written in the form: ሷ𝑥 + 2𝜁𝜔𝑛 ሶ𝑥 +𝜔𝑛

2 𝑥 = 0

❖ Over damped case 𝜁 > 1, there are 2 distinct real roots

𝜆1,2 = −𝜁𝜔𝑛 ± 𝜔𝑛 𝜁2 − 1 = 𝜔𝑛 −𝜁 ± 𝜁2 − 1

Solution is of the form:

𝑥(𝑡) = 𝐴𝑒𝜆𝑡 = 𝑎1𝑒
𝜔𝑛 −𝜁− 𝜁2−1 𝑡

+ 𝑎2𝑒
𝜔𝑛 −𝜁+ 𝜁2−1 𝑡

ሶ𝑥(𝑡) = 𝑎1 −𝜁 − 𝜁2 − 1 𝜔𝑛𝑒
−𝜁− 𝜁2−1 𝜔𝑛𝑡 + 𝑎2 −𝜁 + 𝜁2 − 1 𝜔𝑛𝑒

−𝜁+ 𝜁2−1 𝜔𝑛𝑡

❖ At time 𝑡 = 0, 𝑥 0 = 𝑥0 and ሶ𝑥 0 = 𝑣0:    𝑥 0 = 𝑥0 = 𝑎1 + 𝑎2

ሶ𝑥 0 = 𝑣0 = 𝑎1 −𝜁 − 𝜁2 − 1 𝜔𝑛 + 𝑎2 −𝜁 + 𝜁2 − 1 𝜔𝑛

𝑣0 = −𝜁𝜔𝑛(𝑎1 + 𝑎2) + 𝜔𝑛 𝜁2 − 1 −𝑎1 + 𝑎2

𝑣0 + 𝜁𝜔𝑛𝑥0 = 𝜔𝑛 𝜁2 − 1 −𝑎1 + 𝑎2



Overdamped case

−𝑎1 + 𝑎2 =
𝑣0 + 𝜁𝜔𝑛𝑥0

𝜔𝑛 𝜁2 − 1

𝑎1 + 𝑎2 = 𝑥0
❖ Solve for 𝑎1 and 𝑎2:

𝑎1 =
−𝑣0 − 𝜁 − 𝜁2 − 1 𝜔𝑛𝑥0

2𝜔𝑛 𝜁2 − 1

𝑎2 =
𝑣0 + 𝜁 + 𝜁2 − 1 𝜔𝑛𝑥0

2𝜔𝑛 𝜁2 − 1

❖ The response is:

𝑥(𝑡) = 𝑎1𝑒
−𝜁− 𝜁2−1 𝜔𝑛𝑡 + 𝑎2𝑒

−𝜁+ 𝜁2−1 𝜔𝑛𝑡



Overdamped case

𝑥(𝑡) = 𝑎1𝑒
−𝜁− 𝜁2−1 𝜔𝑛𝑡 + 𝑎2𝑒

−𝜁+ 𝜁2−1 𝜔𝑛𝑡

𝑎1 =
−𝑣0 − 𝜁 − 𝜁2 − 1 𝜔𝑛𝑥0

2𝜔𝑛 𝜁2 − 1

𝑎2 =
𝑣0 + 𝜁 + 𝜁2 − 1 𝜔𝑛𝑥0

2𝜔𝑛 𝜁2 − 1



Comparison

Time response characteristics Phase plane representations


