ME1020

Mechanical vibrations

Lecture 2
Free vibration (undamped 1DOF system)
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Objectives

Review of spring elements

Derive the 1DOF free undamped vibration
system model based on the energy
approach and Lagrange’s equation

Determine the natural frequency, period,
and response of 1DOF free undamped
vibration system response



Review — spring elements

' ' = 1
Translational spring F =kx U= = kx?
2
i ' = 1
Rotational spring T = k6 U=~ kp?
2
Spring is an element associated with storage of potential energy
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Review — spring elements

T — Rod under axial load p =
(1= length, 4 = cross sectional area) e |
“—q N— Tapered rod under axial load e 7EDd
(D, d = end diameters) e 4l
0000000000 Helical spring under axial load Gd*
- (d = wire diameter, D = mean coil k., = Py
diameter, n = number of active turns) i
0
o~ o Hollow shaft under torsion 7G
@ ——————Ph (1= length, D = outer diameter, K,y = 325(D* — d*)
%/ 4 d = inner diameter)

*» E =Young’s modulus
% G = shear modulus;
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Review — spring elements

I
a b Fixed-fixed beam
ﬂ< >E 3 ] EA
1 R _ 3EI(a+ b) =
Keq = a3b3 ]
a -
«)f Cantilever beam x(1)
% @
4 L ’ Keq = SEI E—
| a3
¢ | b i k., = GJ,
l - Simply supported beam ,
. : |
5 3EI(a + b) A
A A keq - a2b2 4/ (t)

% J, = polar area
/ bl . .
** E =Young’s modulus moment of inertia
% | = Moment of inertia;




Review — spring elements

For n springs (with spring constants k4, k,, ---, k,;) connected in series, the

equivalent spring constant is:

1_1 1 +1
keq ki k2

i inl” =l

For n springs (with spring constants k4, k,, -+, k,) connected in parallel,
the equivalent spring constant IS:
keg = k1 + k2 + -+ ky,
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Example 1

The 2 circular beams are pinned to the ends of the rectangular beam. Find
the equivalent spring constant for the transverse loading

E=Young’s modulus;
E, I, L, ||=moment of inertia Kiq %
s
Cantilever beam:  k, =k, = BEéll
L

Pinned-pinned beam: k,
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Example 1
4-> é

48EI

K, =k, =
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A simple spring-mass system

An example of a structure that can be idealized as simple spring-mass
system if friction is negligible:
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(a) Idealization of the )
tall structure (b) Equivalent

spring-mass system



A simple spring-mass system

S LS LSS LLLLLS
k K
n F T
a0 e
F -
At the equilibrium position, the spring

extension balances the weight mg m
¢ Draw the free-body diagram about the T\(z)
equilibrium position
¢ The spring force is F = kx
*» Applying Newton’s law on the mass
mx = —F = —kx
¢ The spring-mass equation is
mx + kx =0

&



A simple spring-mass system

}—» x(t)
k
o =
| 7 O

Friction free smooth surface

A mass-spring system subjected to initial conditions x, and v, Is an
example of a single-degree of freedom “free vibration” undamped system
¢ The system equation has the form:

mX¥+kx=0 or ¥+ wix=0

Natural frequency w,, = \/%

The resulting response is simple harmonic motion
x(t) = Asin(w,t + ¢)

Amplitude A
Phase shift ¢
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Conservation of energy

A single-degree of freedom “free vibration” undamped system:

a) Itis aconservative system as no energy is lost due to friction or energy-
dissipating nonelastic members

b) No work is done on the conservative system by external forces (other
than gravity or other potential forces)
¢ The total energy of the system remains constant:
T + U = constant

= Kinetic energy T = %mfcz orT = 3192
= Potential energy U = %kx2 or U= %k@z
s Total energy is constant also implies

d
dt( +U)=0



Conservation of energy

Consider the given spring-mass system: !
L 1. .

< Kineticenergy T = mez Ll om
|

 Potential energy U = %kx2

¢ Total energy of the system remains constant: Mass Spring
1
T+U-= Emfcz + Ekx2 = constant

¢ Total energy is constant also implies
d df1 1 N
E(T-I_ U) = | 5mx +Ekx = (mxX + kxx) =0
(mi + kx)x =0
Since x cannot be zero for all time:
mx +kx=0



Conservation of energy

Consider the equivalent spring-mass rotational system: k

RN i i — l ) 2 X

X Klnetlc-: energy T = — I1 0 ((".")) .
< Potential energy U = Ekez

¢ Total energy of the system remains constant:

0

1 . 1
T+ U = 5192 +§k62 = constant

¢ Total energy is constant also implies
Loy = i<1m'2 ; lkez) _ (166 + k66) = 0
dt dt \ 2 2
(16 + k0)6 = 0
Since 6 cannot be zero for all time:
10 +k6 =0



Lagrange’s equation

Lagrange’s equation is a method for deriving the equation of motion based on
the energy

“ In terms of generalized coordinate g, the Lagrange’s equation for a single
DOF free undamped system has the form

d (0T 6T+6U_O
dt\og) odq dq

= T =Kinetic energy
= U = Potential energy
= (= generalized coordinate that completely describe the dynamical system

\ Translational 0 " LN .
AN U= >k — 42)°

A B

Rotational



Lagrange’'s Equations

Procedure for 1DOF free undamped systems:
¢ Determine kinetic energy T,

% Find —
Find —

Determine potential energy U,

i ou
Find E

Put the above into the equation:

d (0T 6T+8U_O
dt \dq dqg 0dq

<

L)

%

e

*

e

*

e

*




Example 2

Use Lagrange’s equation to derive the equation of motion for the system
using generalized coordinate 6. Determine the system natural frequency.
The mass moment of inertia of the disk about “O” is I.

«* Note that x = R6

. ‘\ 9 <+ Generalized coordinate q = 6
""" “ Kineticenergy T = %Iéz + %mxz

1 . 1 .
T =—-160%+ -mR?6*

k 2 2
oT 0T : .
v = — =— =16 + mR*0
dq a0
0T OT
— =0

dqg 060



Example 2

< Potential energy U = %kx2 = %kRZH2
U _U_ . s,
dg 00

¢ Apply Lagrange’s equation:
d (0T\ 0T N U
dt \dq dq 0dq
(I + mR?)0 + kR?0 =0

* Natural frequency is

| kR?
“n = T ¥ mR2

=160 + mR?6 + kR?%6 =0




1DOF free undamped

A 1DOF free undamped system equation has the form:
mx + kx =0
% Assumed a solution of the form: x(1) 4

x(t) = Asin(w,t + @) /\

¢ Differentiating twice gives:

x(t) = wyAcos(w,t + @)

¥(t) = —w2Asin(wyt + ¢) = —wix(t)

¢ Substituting these back into the system equation:
—mwix(t) + kx(t) =0

¢ Natural frequency:

k ﬁl'
Ww., = — oo
-1l

% System equation can be written as:

x + wrzlx - O Gd'_l_?'zlib—:.éi
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1DOF free undamped

% If the DOF free undamped system is vibrating then something must have
(in the past) transferred energy into to the system and caused it to move

¢ For example the mass could have been moved a distance x, and then
released at t = O (i.e. given Potential energy) or given an initial velocity v,
(i.e. given Kinetic energy) or some combination of the two cases. These
are called initial conditions

» Since x(t) = Asin( w,t + @), initial displacement attimet = 0 Is

x(0) = xq = Asin( @)
 Similarly x(t) = w,A cos( w,t + ¢), Initial velocity attime t = 0 is
x(0) = vy = w,Acos(p)
% Combining the 2 equations for the initial conditions:

tan(¢p) = PnXo oy ¢ = tan~! (wnxo)

Vo Vo

A%(sin($))* + A%(cos(9))? = x5 + (vo/wy)* or
A= \/xg + (vo/wn)z
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1DOF free undamped

Spring-mass system:

LSS S .
mx + kx =0
L With initial conditions x, and v,
The resulting motion is periodic and has the form
x(t) = Asin(w,t + ¢)
" T{ ] Displacement, x(1)
x(r
21 -
Slope here o }‘7 ! :P Wy, d—.{ Amplitude
1S Vg crio ) 2
Initial h Al
nitia R
displace- - fan < r“)
‘ ment .
Xg ======= - Time,
. — - m% Maximum velocity
Ve
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1DOF free undamped

Xy
¢ O,
Note: tan(¢) = wzxo = Yo y @
0 (l)FJ 2

The solutionto mx + kx =0 Is
x(t) = Asin( w,t + @)
¢ This can be separated into 2 parts:
x(t) = Asin(w,t + ¢) = A; cos(wy,t) + A, sin(w,t)
or

v
x(t) = xy cos( w,t) + a)—osin( Wy, t)
n



1DOF free undamped

Note:
x(t) = Asin(w,t + ¢) = A; cos(wy,t) + A, sin(w,t)
can also be written as

x(t) = Acos(w,t — ¢Pq)

v
b = tan_l( 0 >
WnXo

»» The analysis also applies to 1 DOF free undamped
rotational system by replacing

= initial conditions x, and v, with 8, and 6,
respectively and

* mass with mass moment of inertia

where




1DOF free undamped

To solve mi + kx = 0 with initial conditions x, and v,
We can also assume the solution has the form x = Ae*t

Substitute this back into the governing equation: (mA? + k)Ae?t = 0

This is only satisfied for: mA? + k = 0

Mo = /—%=i\/§j=iwnj where j =+v—-1

Solution is of the form:
x(t) = Ae?t = q,e/¥nt + g e @nt
x(t) = Bsin(w,t + ¢)
x(t) = Bw,cos(w,t + ¢)
s Attimet =0, x(0) = xy and x(0) = vy,:
x(0) = xy = Bsin(¢)
x(0) = vy = Bw,cos(¢p)

tan(gp) = —2°

Vo

Im

Si%)

W, = 0.00
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Example 3

Determine the system equation using Lagrange’s equation and period of small
oscillations of a cylinder which rolls without slipping inside a curved surface.

If the system is displaced at rest by 6, at time t = 0, determine the response.
Let Generalized coordinate g = 6

- Datum

cos @

. . 1
Note: Polar moment of inertia I; = Emr2



Example 3

Datum
)
. 6 (R-r)cos @

** Notethat s=ry = (R—r1r)6
and v = (R —1)0
¢ Generalized coordinate g = 6

< Kinetic energy T = %101152 + %mvz

_mr (R _ T)Z 62 + lm(R —1)%6?
4 r 2
or 0T m "y y
33 = Py: =?(R—r) 0 +m(R—r)6
aT oT 0
dqg 060
% Potential energy U = —mg(R — r)cos(8)
au au

5q - 0 = mg(R — r)sin(0)



Example 3

Apply Lagrange’s equation:
d (0T\ 0oT N ou
dt\dq

L)

*

dq 0q=
d

dt
For small & sin@ =~ @:

( (R —1r)*+m(R — r)z) 6 + mg(R — r)sin(8) = 0

’0

L)

m(R —r)? <1+1>6+m(R—r)g9—0
B/2)(R—1)0+g8=0= 0+ w20 =0

29
3(R-T1)

L)

*

Natural frequency : w, =

L)

. 2 3(R—
% Period: 7 = == = 27 (zgr)
n

L)



Example 3

2
+ Natural frequency : w,, = 3(R€r)
. ] . 2T 3(R—T')
< Period: 71 =— = 2n
Wn 29

% Initial conditions at time t = 0: 8(0) = 6, and 8(0) = 6, = 0

< Amplitude 4 = \/93 + (9'0/(1)”)2 = 6,

% Phase ¢ = tan! (M) .

Vo 2
% System motion or response Is:

. . 29 U 29
x(t) = Asin(w,t + ¢) = 6, sin \}3(R—r)t+5 = 6, cos \}B(R—r)t




