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Mechanical vibrations

Lecture 2 

Free vibration (undamped 1DOF system)



Objectives

 Review of spring elements

 Derive the 1DOF free undamped vibration 
system model based on the energy 
approach and Lagrange’s equation

 Determine the natural frequency, period, 
and response of 1DOF free undamped 
vibration system response



Review – spring elements

Spring is an element associated with storage of potential energy

❖ Force F 

❖ Torque T

❖ Spring constant k

❖ Linear deformation x

❖ Angular deformation 
❖ Energy U

TYPE LOAD ENERGY

Translational spring 𝐹 = 𝑘𝑥
𝑈 =

1

2
𝑘𝑥2

Rotational spring 𝑇 = 𝑘𝜃
𝑈 =

1

2
𝑘𝜃2



Review – spring elements

❖ E = Young’s modulus

❖ G = shear modulus; 



Review – spring elements

❖ E = Young’s modulus

❖ I = Moment of inertia; 

a b Fixed-fixed beam

𝑘𝑒𝑞 =
3𝐸𝐼(𝑎 + 𝑏)3

𝑎3𝑏3

a

L

Cantilever beam

𝑘𝑒𝑞 =
3𝐸𝐼

𝑎3

a b
Simply supported beam

𝑘𝑒𝑞 =
3𝐸𝐼(𝑎 + 𝑏)

𝑎2𝑏2

❖ Jp = polar area 

moment of inertia



Review – spring elements

For  n springs (with spring constants 𝑘1, 𝑘2, ⋯ , 𝑘𝑛) connected in series, the 

equivalent spring constant is:
1

𝑘𝑒𝑞
=

1

𝑘1
+

1

𝑘2
+. . . +

1

𝑘𝑛

For  n springs (with spring constants 𝑘1, 𝑘2, ⋯ , 𝑘𝑛) connected in parallel, 

the equivalent spring constant is:

𝑘𝑒𝑞 = 𝑘1 + 𝑘2 +⋯+ 𝑘𝑛



Example 1

The 2 circular beams are pinned to the ends of the rectangular beam. Find 

the equivalent spring constant for the transverse loading

F

L

L/2

E, IE1, I1, L1

E1, I1, L1

E=Young’s modulus;

I=moment of inertia
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Example 1

F

L

L/2

E, IE1, I1, L1

E1, I1, L1
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A simple spring-mass system

An example of a structure that can be idealized as simple spring-mass 

system if friction is negligible:



A simple spring-mass system

❖ At the equilibrium position, the spring 

extension balances the weight 𝑚𝑔
❖ Draw the free-body diagram about the 

equilibrium position 

❖ The spring force is 𝐹 = 𝑘𝑥
❖ Applying Newton’s law on the mass

𝑚 ሷ𝑥 = −𝐹 = −𝑘𝑥
❖ The spring-mass equation is

𝑚 ሷ𝑥 + 𝑘𝑥 = 0

x(t)



A simple spring-mass system

❖ A mass-spring system subjected to initial conditions 𝑥0 and 𝑣0 is an 

example of a single-degree of freedom “free vibration” undamped system 

❖ The system equation has the form: 

𝑚 ሷ𝑥 + 𝑘𝑥 = 0 or ሷ𝑥 + 𝜔𝑛
2𝑥 = 0

▪ Natural frequency 𝜔𝑛 =
𝑘

𝑚

▪ The resulting response is simple harmonic motion 

𝑥 𝑡 = 𝐴 sin 𝜔𝑛𝑡 + 𝜙
▪ Amplitude 𝐴
▪ Phase shift 𝜙



Conservation of energy

A single-degree of freedom “free vibration” undamped system:

a) It is a conservative system as no energy is lost due to friction or energy-

dissipating nonelastic members

b) No work is done on the conservative system by external forces (other 

than gravity or other potential forces)

❖ The total energy of the system remains constant:

𝑇 + 𝑈 = constant

▪ Kinetic energy 𝑇 =
1

2
𝑚 ሶ𝑥2 or 𝑇 =

1

2
𝐼 ሶ𝜃2

▪ Potential energy 𝑈 =
1

2
𝑘𝑥2 or   𝑈 =

1

2
𝑘𝜃2

❖ Total energy is constant also implies
𝑑

𝑑𝑡
𝑇 + 𝑈 = 0



Conservation of energy

Consider the given spring-mass system:

❖ Kinetic energy 𝑇 =
1

2
𝑚 ሶ𝑥2

❖ Potential energy 𝑈 =
1

2
𝑘𝑥2

❖ Total energy of the system remains constant:

𝑇 + 𝑈 =
1

2
𝑚 ሶ𝑥2 +

1

2
𝑘𝑥2 = constant

❖ Total energy is constant also implies

𝑑

𝑑𝑡
𝑇 + 𝑈 =

𝑑

𝑑𝑡

1

2
𝑚 ሶ𝑥2 +

1

2
𝑘𝑥2 = 𝑚 ሶ𝑥 ሷ𝑥 + 𝑘𝑥 ሶ𝑥 = 0

𝑚 ሷ𝑥 + 𝑘𝑥 ሶ𝑥 = 0
Since ሶ𝑥 cannot be zero for all time:

𝑚 ሷ𝑥 + 𝑘𝑥 = 0



Conservation of energy

Consider the equivalent spring-mass rotational system:

❖ Kinetic energy 𝑇 =
1

2
𝐼 ሶ𝜃2

❖ Potential energy 𝑈 =
1

2
𝑘𝜃2

❖ Total energy of the system remains constant:

𝑇 + 𝑈 =
1

2
𝐼 ሶ𝜃2 +

1

2
𝑘𝜃2 = constant

❖ Total energy is constant also implies

𝑑

𝑑𝑡
𝑇 + 𝑈 =

𝑑

𝑑𝑡

1

2
𝐼 ሶ𝜃2 +

1

2
𝑘𝜃2 = 𝐼 ሶ𝜃 ሷ𝜃 + 𝑘𝜃 ሶ𝜃 = 0

𝐼 ሷ𝜃 + 𝑘𝜃 ሶ𝜃 = 0

Since ሶ𝜃 cannot be zero for all time:

𝐼 ሷ𝜃 + 𝑘𝜃 = 0



Lagrange’s equation

Lagrange’s equation is a method for deriving the equation of motion based on 

the energy 

❖ In terms of generalized coordinate q, the Lagrange’s equation for a single 

DOF free undamped system has the form

𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝑞
−
𝜕𝑇

𝜕𝑞
+
𝜕𝑈

𝜕𝑞
= 0

▪ T = Kinetic energy 

▪ U = Potential energy

▪ q = generalized coordinate that completely describe the dynamical system

Rotational

Translational

𝑈 =
1

2
𝑘(𝑞1 − 𝑞2)

2



Lagrange’s Equations

Procedure for 1DOF free undamped systems:

❖ Determine kinetic energy T, 

❖ Find  
𝜕𝑇

𝜕 ሶ𝑞

❖ Find  
𝜕𝑇

𝜕𝑞

❖ Determine potential energy U, 

❖ Find  
𝜕𝑈

𝜕𝑞

❖ Put the above into the equation:

𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝑞
−
𝜕𝑇

𝜕𝑞
+
𝜕𝑈

𝜕𝑞
= 0



Example 2

Use Lagrange’s equation to derive the equation of motion for the system 

using generalized coordinate 𝜃. Determine the system natural frequency. 

The mass moment of inertia of the disk about “O” is I. 

❖ Note that 𝑥 = 𝑅𝜃
❖ Generalized coordinate  𝑞 = 𝜃

❖ Kinetic energy 𝑇 =
1

2
𝐼 ሶ𝜃2 +

1

2
𝑚 ሶ𝑥2

𝑇 =
1

2
𝐼 ሶ𝜃2 +

1

2
𝑚𝑅2 ሶ𝜃2

𝜕𝑇

𝜕 ሶ𝑞
=
𝜕𝑇

𝜕 ሶ𝜃
= 𝐼 ሶ𝜃 + 𝑚𝑅2 ሶ𝜃

𝜕𝑇

𝜕𝑞
=
𝜕𝑇

𝜕𝜃
= 0



Example 2

❖ Potential energy   𝑈 =
1

2
𝑘𝑥2 =

1

2
𝑘𝑅2𝜃2

𝜕𝑈

𝜕𝑞
=
𝜕𝑈

𝜕𝜃
= 𝑘𝑅2𝜃

❖ Apply Lagrange’s equation:

𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝑞
−
𝜕𝑇

𝜕𝑞
+
𝜕𝑈

𝜕𝑞
= 𝐼 ሷ𝜃 + 𝑚𝑅2 ሷ𝜃 + 𝑘𝑅2𝜃 = 0

(𝐼 + 𝑚𝑅2) ሷ𝜃 + 𝑘𝑅2𝜃 = 0

❖ Natural frequency is

𝜔𝑛 =
𝑘𝑅2

𝐼 + 𝑚𝑅2



1DOF free undamped

A 1DOF free undamped system equation has the form:  

𝑚 ሷ𝑥 + 𝑘𝑥 = 0
❖ Assumed a solution of the form:

𝑥(𝑡) = 𝐴 sin(𝜔𝑛𝑡 + 𝜙)
❖ Differentiating twice gives: 

ሶ𝑥(𝑡) = 𝜔𝑛𝐴 cos(𝜔𝑛𝑡 + 𝜙)
ሷ𝑥(𝑡) = −𝜔𝑛

2𝐴 sin(𝜔𝑛𝑡 + 𝜙) = −𝜔𝑛
2𝑥(𝑡)

❖ Substituting these back into the system equation:

−𝑚𝜔𝑛
2𝑥(𝑡) + 𝑘𝑥(𝑡) = 0

❖ Natural frequency:

𝜔𝑛 =
𝑘

𝑚

❖ System equation can be written as:

ሷ𝑥 + 𝜔𝑛
2𝑥 = 0



1DOF free undamped

❖ If  the DOF free undamped system is vibrating then something must have 

(in the past) transferred energy into to the system and caused it to move

❖ For example the mass could have been moved a distance 𝑥0 and then 

released at t = 0 (i.e. given Potential energy) or given an initial velocity v0

(i.e. given Kinetic energy) or  some combination of the two cases. These 

are called initial conditions

❖ Since 𝑥(𝑡) = 𝐴 sin(𝜔𝑛𝑡 + 𝜙), initial displacement at time 𝑡 = 0 is

𝑥(0) = 𝑥0 = 𝐴 sin(𝜙)
❖ Similarly ሶ𝑥(𝑡) = 𝜔𝑛𝐴 cos(𝜔𝑛𝑡 + 𝜙), initial velocity at time 𝑡 = 0 is

ሶ𝑥(0) = 𝑣0 = 𝜔𝑛𝐴 cos(𝜙)
❖ Combining the 2 equations for the initial conditions:

tan 𝜙 =
𝜔𝑛𝑥0

𝑣0
or   𝜙 = tan−1

𝜔𝑛𝑥0

𝑣0

𝐴2 sin(𝜙) 2 + 𝐴2 cos(𝜙) 2 = 𝑥0
2 + Τ𝑣0 𝜔𝑛

2 or

𝐴 = 𝑥0
2 + Τ𝑣0 𝜔𝑛

2



1DOF free undamped

Spring-mass system:

𝑚 ሷ𝑥 + 𝑘𝑥 = 0
With initial conditions 𝑥0 and 𝑣0
The resulting motion is periodic and has the form

𝑥 𝑡 = 𝐴 sin 𝜔𝑛𝑡 + 𝜙



1DOF free undamped

Note: tan 𝜙 =
𝜔𝑛𝑥0

𝑣0
⟹

The solution to  𝑚 ሷ𝑥 + 𝑘𝑥 = 0 is 

𝑥(𝑡) = 𝐴 sin(𝜔𝑛𝑡 + 𝜙)
❖ This can be separated into 2 parts:

𝑥(𝑡) = 𝐴 sin(𝜔𝑛𝑡 + 𝜙) = 𝐴1 cos(𝜔𝑛𝑡) + 𝐴2 sin(𝜔𝑛𝑡)
or

𝑥(𝑡) = 𝑥0 cos(𝜔𝑛𝑡) +
𝑣0
𝜔𝑛

sin(𝜔𝑛𝑡)



1DOF free undamped

Note:

𝑥(𝑡) = 𝐴 sin(𝜔𝑛𝑡 + 𝜙) = 𝐴1 cos(𝜔𝑛𝑡) + 𝐴2 sin(𝜔𝑛𝑡)
can also be written as

𝑥(𝑡) = 𝐴 cos(𝜔𝑛𝑡 − 𝜙1)
where

𝜙1 = tan−1
𝑣0

𝜔𝑛𝑥0

❖ The analysis also applies to 1 DOF free undamped 

rotational system by replacing 

▪ initial conditions 𝑥0 and v0 with 𝜃0 and ሶ𝜃0
respectively and 

▪ mass with mass moment of inertia



1DOF free undamped
To solve 𝑚 ሷ𝑥 + 𝑘𝑥 = 0 with initial conditions 𝑥0 and 𝑣0
We can also assume the solution has the form 𝑥 = 𝐴𝑒𝜆𝑡

Substitute this back into the governing equation: (𝑚𝜆2 + 𝑘)𝐴𝑒𝜆𝑡 = 0
This is only satisfied for: 𝑚𝜆2 + 𝑘 = 0

𝜆1,2 = −
𝑘

𝑚
= ±

𝑘

𝑚
𝑗 = ±𝜔𝑛𝑗 where  𝑗 = −1

Solution is of the form:

𝑥(𝑡) = 𝐴𝑒𝜆𝑡 = 𝑎1𝑒
𝑗𝜔𝑛𝑡 + 𝑎2𝑒

−𝑗𝜔𝑛𝑡

𝑥(𝑡) = 𝐵 sin(𝜔𝑛𝑡 + 𝜙)
ሶ𝑥(𝑡) = 𝐵𝜔𝑛cos 𝜔𝑛𝑡 + 𝜙
❖ At time 𝑡 = 0, 𝑥 0 = 𝑥0 and ሶ𝑥 0 = 𝑣0:

𝑥 0 = 𝑥0 = 𝐵sin 𝜙
ሶ𝑥 0 = 𝑣0 = 𝐵𝜔𝑛cos 𝜙

tan 𝜙 =
𝜔𝑛𝑥0
𝑣0



Example 3

Determine the system equation using Lagrange’s equation and period of small 

oscillations of a cylinder which rolls without slipping inside a curved surface. 

If the system is displaced at rest by 0 at time  t = 0, determine the response. 

Let Generalized coordinate  𝑞 = 𝜃

Note: Polar moment of inertia 𝐼𝐺 =
1

2
𝑚𝑟2

𝑣 = 𝑟 ሶ𝜓 = (𝑅 − 𝑟) ሶ𝜃



Example 3
❖ Note that  𝑠 = 𝑟𝜓 = (𝑅 − 𝑟)𝜃

and  𝑣 = (𝑅 − 𝑟) ሶ𝜃
❖ Generalized coordinate  𝑞 = 𝜃

❖ Kinetic energy 𝑇 =
1

2
𝐼𝐺 ሶ𝜓2 +

1

2
𝑚𝑣2

𝑇 =
𝑚𝑟2

4

𝑅 − 𝑟

𝑟

2

ሶ𝜃2 +
1

2
𝑚(𝑅 − 𝑟)2 ሶ𝜃2

𝜕𝑇

𝜕 ሶ𝑞
=
𝜕𝑇

𝜕 ሶ𝜃
=
𝑚

2
(𝑅 − 𝑟)2 ሶ𝜃 + 𝑚(𝑅 − 𝑟)2 ሶ𝜃

𝜕𝑇

𝜕𝑞
=
𝜕𝑇

𝜕𝜃
= 0

❖ Potential energy   𝑈 = −𝑚𝑔 𝑅 − 𝑟 cos(𝜃)

𝜕𝑈

𝜕𝑞
=
𝜕𝑈

𝜕𝜃
= 𝑚𝑔 𝑅 − 𝑟 sin(𝜃)

𝑣 = 𝑟 ሶ𝜓 = (𝑅 − 𝑟) ሶ𝜃



Example 3
❖ Apply Lagrange’s equation:

𝑑

𝑑𝑡

𝜕𝑇

𝜕 ሶ𝑞
−
𝜕𝑇

𝜕𝑞
+
𝜕𝑈

𝜕𝑞
= 0

𝑑

𝑑𝑡

𝑚

2
(𝑅 − 𝑟)2+𝑚(𝑅 − 𝑟)2 ሶ𝜃 + 𝑚𝑔 𝑅 − 𝑟 sin(𝜃) = 0

❖ For small : sin 𝜃 ≈ 𝜃:  

𝑚(𝑅 − 𝑟)2
1

2
+ 1 ሷ𝜃 + 𝑚 𝑅 − 𝑟 𝑔𝜃 = 0

Τ3 2 𝑅 − 𝑟 ሷ𝜃 + 𝑔𝜃 = 0 ⟹ ሷ𝜃 + 𝜔𝑛
2𝜃 = 0

❖ Natural frequency : 𝜔𝑛 =
2𝑔

3(𝑅−𝑟)

❖ Period: 𝜏 =
2𝜋

𝜔𝑛
= 2𝜋

3(𝑅−𝑟)

2𝑔



Example 3

❖ Natural frequency : 𝜔𝑛 =
2𝑔

3(𝑅−𝑟)

❖ Period: 𝜏 =
2𝜋

𝜔𝑛
= 2𝜋

3(𝑅−𝑟)

2𝑔

❖ Initial conditions at time 𝑡 = 0: 𝜃 0 = 𝜃0 and ሶ𝜃 0 = ሶ𝜃0 = 0

❖ Amplitude 𝐴 = 𝜃0
2 + Τሶ𝜃0 𝜔𝑛

2
= 𝜃0

❖ Phase 𝜙 = tan−1
𝜔𝑛𝑥0

𝑣0
=

𝜋

2

❖ System motion or response is:

𝑥 𝑡 = 𝐴 sin 𝜔𝑛𝑡 + 𝜙 = 𝜃0 sin
2𝑔

3(𝑅 − 𝑟)
𝑡 +

𝜋

2
= 𝜃0 cos

2𝑔

3(𝑅 − 𝑟)
𝑡


